# Enhanced bending and high field performance of CORC<sup>®</sup> cables and wires for accelerator magnets

Danko van der Laan & Jeremy Weiss

Advanced Conductor Technologies & University of Colorado, Boulder, Colorado, USA

#### Sven Doenges & Kyle Radcliff

Advanced Conductor Technologies, Boulder, Colorado, USA

Anne de Jager University of Colorado, Boulder, Colorado, USA

Xiaorong Wang & Hugh Higley Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.



Advanced Conductor Technologies www.advancedconductor.com

LTSW 2024, Seaside California, April 3<sup>rd</sup>, 2024



# CORC<sup>®</sup> cables and wires: the previous generation

# CORC<sup>®</sup> wires (2.5 – 4.5 mm diameter)

- Wound from 2 3 mm wide tapes with 25 and 30  $\mu m$  substrates
- Allow bending to 30 mm radius at >80 %  $I_c$  retention
- $J_e(4.2 \text{ K}, 20 \text{ T}) = 451 \text{ A/mm}^2$  (record R&D sample), 300 A/mm<sup>2</sup> (with production tapes)
- *I*<sub>c</sub>(20 T) = 3,000 4,000 A

# Inserts for 20 T canted-cosine theta accelerator magnets

- Require 20 mm radius at >90 % I<sub>c</sub> retention
- Require  $J_e(20 \text{ T})$  of 500 600 A/mm<sup>2</sup> with production tapes
- I<sub>c</sub>(4.2 K, 20 T) of 5,000 20,000 A

# **CORC®** cable (5 – 8 mm diameter)

- Wound from 3 4 mm wide tapes with  $30 50 \mu$ m substrates
- Allow bending to 50 70 mm radius, depending on configuration
- J<sub>e</sub>(4.2 K, 10 T) = 600 800 A/mm<sup>2</sup> (production tapes)

# Potential for large aperture CCT outserts

- CORC<sup>®</sup> CCT 10 12 T outsert operating at 4.2 K
- CORC<sup>®</sup> CCT stand-alone 8 10 T at 20 K





The CCT magnet program at LBNL has been one of the major drivers for CORC<sup>®</sup> magnet wire development. Remaining shortcomings of CORC<sup>®</sup> wires need to be address to ultimately reach a 20 T dipole field.

# 1. Addressing the supply chain issues of REBCO tapes with 30 $\mu m$ substrates

- Qualification of REBCO tapes from SuperOx (now Faraday Factory) and Shanghai Superconductor Technologies
- Working with High-temperature Superconductors Inc. to developing a robust domestic supply chain

# 2. Development of next generation CORC<sup>®</sup> wires and cabled with improved bending performance

- CORC<sup>®</sup> wires allowing for 20 mm bending radius, and possibly smaller
- CORC<sup>®</sup> cables allowing for 40 mm bending radius

### **3.** Reaching new operating currents and current densities in CORC<sup>®</sup> wires

- Raising the in-field  $J_e$  and  $I_c$  values in CORC<sup>®</sup> wires to new heights
- Focusing on production REBCO tapes, no longer on record R&D samples





# CORC<sup>®</sup> wire development for LBNL's CCT magnets

# Program goal to reach 20 T dipole field by

- Demonstrating stand-alone CCT magnets at 1 T, 3 T, 5 T and 8 10 T
- Combining a 12 15 T LTS CCT outsert with a 5 8 T CORC<sup>®</sup> CCT insert

# Successful demonstration of 1.2 T (CCT-C1)

- First 2-layer coil wound from low-J<sub>e</sub> 16-tape CORC<sup>®</sup> wire to learn the magnet winding procedures
- Generated 1.2 T at 4.5 kA

# Successful demonstration of 2.9 T (CCT-C2)

- 4-Layer coil wound from medium-J<sub>e</sub> 30-tape CORC<sup>®</sup> wire resulting in significant stresses
- Designed with 30 mm radius bend at poles
- Generated 2.9 T at 6.5 kA



A 1.2-T canted cos  $\vartheta$  dipole magnet using hightemperature superconducting CORC<sup>®</sup> wires, X. Wang, et al., Supercond. Sci. Technol. **32**, 075002 (2019)







Conductor Technologies www.advancedconductor.com

Current (kA)



1.2

1.0

€ 0.8

# CORC<sup>®</sup> wire development for magnet CCT-C3 (5 T)

# How to reach 5 T in CCT-C3?

- Magnet containing 6 layers with 40 turns each, requiring 145 meters of CORC<sup>®</sup> wire
- Again using 30 mm bending radius at poles
- Develop high-J<sub>e</sub> CORC<sup>®</sup> wire from 30 tapes using SuperPower's new "HM" formulation



- Order placed March 2019 for 12 km of SCS-2030 HM tape with minimum  $I_c$ (4 K, 6 T) of 400 A
- REBCO tape order fulfilled in May 2022 => 3 years delivery time!





# Challenges with SuperPower HM tape for cabling into CORC® wires

### Sub-par mechanical robustness of many batched prevented cabling into CORC<sup>®</sup> wires with 2.55 mm core

- Substrate thickness determines the smallest core size of CORC® wires
- 30 μm substrates allow 2.3 mm thick cores, as long as the ceramic films are mechanically "robust"
- Many batches of SuperPower HM tape failed at much larger core size



Line indicates CORC<sup>®</sup> wire core size

Cause remains unknown. "Weak" tape batches were rejected and replaced by SuperPower



Advanced Conductor Technologies www.advancedconductor.com



# Challenges with SuperPower HM tape for cabling into CORC® wires (Cont.)

# **CORC®** wires became less flexible due to very high surface roughness of latest SuperPower tapes

- CORC<sup>®</sup> wire bending performance is largely determined by friction between tapes
- CORC<sup>®</sup> wires wound from pre-2020 SuperPower tapes allow bending to 30 mm radius
- High surface roughness of post-2020 SuperPower tapes caused loss of CORC<sup>®</sup> wire flexibility

### CCT-C2 (AP based) CORC<sup>®</sup> wire

- $70 80 \% I_c$  retention at 30 mm radius
- Ok, not great



#### HM tape based CORC<sup>®</sup> wire

- $60 65 \% I_c$  retention at 30 mm radius
- Unacceptable!



# Flexibility ultimately restored (later slides) and CCT-C3 CORC<sup>®</sup> wire delivered December 2023



Advanced Conductor Technologies www.advancedconductor.com



# REBCO tape qualification with 30 $\mu\text{m}$ substrates from different vendors



# 2. SuperOx (tapes purchased in 2019 before they became Faraday Factory)

- Reversible change in  $I_c$  of almost 20 % due to winding strain
- Standard tapes (2.5 μm thick REBCO layers): smallest core 3.0 mm
- Special batch (1.5 μm thick REBCO layers): Smallest core 2.55 mm

### SuperOx tapes with 30 $\mu m$ substrates

- Require larger cores that reduce J<sub>e</sub>
- Are no longer available

# 3. Shanghai Superconductor Technologies

- Order of 5 km Shanghai Superconductor tape with 30  $\mu m$  substrate was delivered within 4 months
- All batches measured so far allow winding onto 2.2 2.4 mm thick cores
- Pinning comparable to SuperPower AP tapes

# Shanghai Superconductor remains the only vendor worldwide of REBCO tapes with 30 $\mu m$ substrates











# CORC<sup>®</sup> wires with improved bending flexibility: SuperPower HM tapes

# **New CORC® wire manufacturing process (P2)**

- Recovers bending flexibility when using "rough" tapes (such as latest SuperPower tapes)
- Allows for even smaller bending diameters than previous generation CORC<sup>®</sup> wires



#### SuperPower HM 30-tape CORC<sup>®</sup> wire

#### Extracted tape $I_c$ after bending to 25 mm radius

### **Next generation 30-tape CORC® wire bending (SuperPower HM tapes)**

- I<sub>c</sub> retention 91.8 % at 25 mm radius bend and around 78 % at 17.5 mm radius bend
- Should provide CCT-C3 with much larger margin in  $I_c$  than the 70 % used in its design

![](_page_8_Picture_10.jpeg)

![](_page_8_Picture_12.jpeg)

# CORC<sup>®</sup> wires with improved bending flexibility: SuperOx tapes

# SuperOx tape CORC<sup>®</sup> wire details

- Larger core of 3.2 mm thickness results in 4.15 mm thick CORC<sup>®</sup> wire
- Manufactured with process P2

![](_page_9_Picture_4.jpeg)

![](_page_9_Figure_5.jpeg)

# Next generation 30-tape CORC<sup>®</sup> wire bending (SuperOx tapes)

- *I*<sub>c</sub> retention 86.5 % at 25 mm radius bend
- Lower mechanical resilience of SuperOx tapes likely also affect bending performance
- Larger core likely has an impact on bending performance (higher tape pressure during bending)

![](_page_9_Picture_10.jpeg)

![](_page_9_Picture_12.jpeg)

# CORC<sup>®</sup> wires with improved bending flexibility: Shanghai Superconductor tapes

![](_page_10_Figure_1.jpeg)

# Next generation 30-tape CORC<sup>®</sup> wire bending (Shanghai Superconductor tapes)

- *I*<sub>c</sub> retention **97.5 % at 20 mm bend radius**, and 83.5 % at 15 mm bend radius
- CORC<sup>®</sup> wires wound from Shanghai Superconductor tapes now allow CCT magnets with 20 mm radius bends

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_7.jpeg)

# CORC<sup>®</sup> cables with improved bending flexibility

# **CORC®** cable details

- Shanghai Superconductor CORC<sup>®</sup> cable made with procedure P4
- 4.2 mm core, 24 tapes of 4 mm width and 30 μm substrates
- Cable thickness 5.35 mm

![](_page_11_Figure_5.jpeg)

# Next generation 24-tape CORC® wire bending

- *I*<sub>c</sub> retention 85.9 % at 40 mm bend radius and 79 % at 35 mm bend radius
- CORC<sup>®</sup> cables wound from Shanghai Superconductor tapes now allow CCT magnets with 40 mm radius bends

![](_page_11_Picture_9.jpeg)

# In-field performance of CORC<sup>®</sup> wires: SuperPower HM tapes

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

BERKELEY LAE

# In-field performance of CORC<sup>®</sup> wires: SuperOx tapes

| CORC <sup>®</sup> wire wound from SuperOx production tapes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B [T]   | l <sub>quench</sub><br>[A] | / <sub>c</sub> [A] | <i>n</i> -<br>value | J <sub>e</sub><br>[A/mm²] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------|--------------------|---------------------|---------------------------|
| <ul> <li>Using SuperOx-specific CORC<sup>®</sup> wire layout with 3.2 mm core</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6       | 8 <i>,</i> 554             | 9,744              | 7.7                 | 648                       |
| Bend into 31.5 mm radius hairpin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7       | 8,221                      | 8,913              | 8.3                 | 623                       |
| • $I(11 \text{ T}) \text{ of } 510 \text{ A}/\text{mm}^2 \text{ and overapolated } I(20 \text{ T}) \text{ of } 398 \text{ A}/\text{mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8       | 7,823                      | 8,302              | 7.8                 | 593                       |
| $J_e(111)$ of 510 A/min and exclapolated $J_e(201)$ of 588 A/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>10 | 7,407                      | 7,750<br>7,720     | 7.0                 | 500                       |
| <ul> <li>Larger core results in lower J<sub>e</sub> than in standard CORC<sup>®</sup> wires with 2.55 mm core</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.5    | 6,925                      | 7,232              | 11.0                | 525                       |
| <ul> <li>CORC<sup>®</sup> wire performance is 79.6 % of total tape performance at 11 T</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11      | 6,731                      | 6,883              | 12.0                | 510                       |
| (f) = (f) | $ \begin{array}{c} 10000 \\ 8000 \\ \hline 6000 \\ 4000 \\ 2000 \\ 4 \\ 6 \\ 6 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$ |         | 5,236*                     |                    |                     | 388*                      |

![](_page_13_Picture_2.jpeg)

Advanced Conductor Technologies www.advancedconductor.com

# In-field performance of CORC<sup>®</sup> wires: Shanghai Superconductor tapes

![](_page_14_Figure_1.jpeg)

# CORC<sup>®</sup>-based hybrid high-field CCT magnets operating at 4 K

### **Next generation of CORC® wires enable potential magnet CCT-C4**

- Reduce the OD from 160 mm (CCT-C3) to less than 120 mm to fit future 11 T LTS CCT outsert
- 45 mm aperture, 6 layers, 40 turns per layer
- 20 mm bend radius at poles (compared to 30 mm radius for CCT-C3)

# **CCT-C4 SuperPower HM "option"**

- Stand-alone dipole field of 8.9 T at 9.6 kA (100 %  $I_c$ )
- 5.3 T at 6.7 kA as insert within a 11 T outsert: 16.3 T total
- Combined dipole field of 15.77 T at 90 % *I*<sub>c</sub> retention

# **CCT-C4** Shanghai Superconductor option

- Stand-alone dipole field of 7.1 T at 9 kA (100 %  $I_c$ )
- 4.7 T at 5.9 kA as insert within a 11 T outsert: 15.7 T total
- Combined dipole field of 15.23 T at 90 % *I*<sub>c</sub> retention

![](_page_15_Figure_13.jpeg)

BERKELEY LA

![](_page_15_Picture_14.jpeg)

# Stand-alone high-field CORC® CCT magnets at 4.2 K

# Combining a CORC<sup>®</sup> CCT outsert with a CORC<sup>®</sup> CCT insert

- CORC<sup>®</sup> CCT outsert aperture 155 mm, 8 layers of 32-tape CORC<sup>®</sup> cable with 45 mm bend radius
- CORC<sup>®</sup> CCT insert aperture 50 mm, 8 layers of standard 30-tape CORC<sup>®</sup> wire with 20 mm bend radius

### **CORC®** cable and wire based on SuperPower HM tape

- Insert: dipole field 6.2 T at 6.2 kA
- Outsert: dipole field 11.5 T at 15.9 kA
- Combined field of 17.7 T

# **CORC®** cable and wire based on Shanghai Superconductor tape

- Insert: dipole field 5.8 T at 5.7 kA
- Outsert: dipole field 10.1 T at 13.3 kA
- Combined field of 15.9 T

![](_page_16_Figure_12.jpeg)

![](_page_16_Picture_13.jpeg)

# Summary

# Next generation CORC<sup>®</sup> cables wires addresses the main shortcomings of their previous generation

- CORC wires developed from REBCO tapes from different vendors
- Now have much better bending flexibility
- Have much higher  $J_{e}(20 \text{ T})$  using production tapes at more than 90 % expected  $I_{c}$

### **Smallest bending radius of 30-tape CORC® wires reduced by factor of over 2**

- $I_c$  retention of 97.5 % at 20 mm radius improved from 78 %  $I_c$  retention at 30 mm radius
- *I*<sub>c</sub> retention of 83.5 % at 15 mm radius

# In-field performance of 30-tape CORC<sup>®</sup> wires increased by factor of 1.5 – 1.8

- New record  $J_e(20 \text{ T})$  of 530 A/mm<sup>2</sup> achieved in SuperPower HM based CORC<sup>®</sup> wire at 31.5 mm bending radius
- High J<sub>e</sub>(20 T) of 465 A/mm<sup>2</sup> achieved in CORC<sup>®</sup> wire wound from Shanghai Superconductor production tape with 90 % I<sub>c</sub> retention at 20 mm bending radius

### Impact of next generation CORC<sup>®</sup> wires on accelerator magnet development

- Options for next CCT magnet with 7 8 T stand-alone, and 4 5 T in 11 T background field identified
- Current CORC<sup>®</sup> cables and wires made from production REBCO tapes now allow manufacturing of low-inductance 15 – 17 T HTS-only CCT accelerator magnets!

![](_page_17_Picture_14.jpeg)

![](_page_17_Picture_16.jpeg)