Work supported by

U.S. Department of Energy award numbers HEP: DE-SC0014009, DE-SC0018127, DE-SC0021687 FES: DE-SC0020710, DE-SC0018125, DE-SC0013723 AMO EERE: DE-EE0007872

Recent Progress in Conductor-On-Round-Core (CORC[®]) conductor and magnet development

Jeremy Weiss, Kyle Radcliff, Sven Dönges, & Danko van der Laan Advanced Conductor Technologies

> Zachary Johnson University of Colorado Boulder, Colorado, USA

Advanced Conductor Technologies www.advancedconductor.com

LTSW 2023

CORC[®] production

Winding of long CORC[®] cables and wires with custom machine

- Accurate control of cable layout
- Long lengths possible (> 100 meters)
- Longest continuous CORC[®] cable: 42 meters (30 tapes)
- *I*_c retention after winding 95-105 %

Cumulative CORC® production

- Over 1,300 meters since 2012
- Over 400 m for commercial orders

Recent advances in CORC[®] wires and cables

Where are the limits and how do we push them?

High resilience of CORC[®] cables against operating stress

CORC® cable under transverse compressive load

- Is independent of orientation
- Has shown high resilience against cyclic loading

CORC® cable under axial tensile strain

- Axial strength is driven by core material
- Has shown high resilience against cyclic loading

van der Laan, D.C. et al, *Superconduct. Sci. Technol.* **32** 015002 (2019) van der Laan, D.C. et al, *Superconduct. Sci. Technol.* **32** 054004 (2019)

High irreversible tensile strain limits beyond 7 % achieved in CORC®

- Comes from uncoupling REBCO layer from the former that makes up the core of the CORC[®]
- Tapes wound into a helical fashion extend as springs, allowing large elongations before degradation
- Irreversible strain limit of CORC[®] depends mainly on tape winding angle

Laan at all. High-temperature superconducting CORC[®] wires with record-breaking axial tensile strain tolerance present a breakthrough for high-field magnets," *SUST 2021* doi: 10.1088/1361-6668/ac1aae.

High-Mag (HM) tapes developed in 2020-2022

Performance of 3.6 mm OD 30-tape CORC® wire based on tapes with 30 μm substrate

New high-pinning 2 mm wide tapes offer 20-40 % performance increase

Currents at 20 T in the range of 5-7 kA at 500-700 A/mm² for a 3.6 mm OD CORC[®] wire

Increased performance also opens the door for CORC[®] cables to reach even higher currents > 20 kA at 20 T

Extensive effort to evaluate recent REBCO tapes

- Bending performance of CORC[®] wires has varied significantly
- For some CORC[®] wires, bending to 60 mm diameter resulted in 35
 40 % degradation, which is unacceptable for HEP applications
- Cause seems to be varied surface roughness and presence of slitting burr that can affect bending performance

10-20 μm thick, Intermittent burr

Height map

Advanced Conductor Technologies www.advancedconductor.com New cabling process had to be developed to retain CORC[®] flexibility

I_c as a function of bending a hairpin sample

Recent advances in CORC[®] CICC

How do we build and test reliable high-current CICC for Fusion applications?

CORC[®] CICC development

Different layouts being developed for magnet systems: Central solenoid, Toroidal, etc.

CORC [®] -CICC size	[mm]	10 x 10	22.23	31.75	38.1
CORC [®] conductors	[-]	1 cable	6 wires	6 cables	14 wires
Tapes per conductor	[-]	42	30	42	30
Tape width	[m]	4	3	4	3
I _c (4.2 К, 20 Т)	[kA]	13.4	43.0	80.3	100.4
J _e (4.2 K, 20 T)	[A/mm ²]	133.8	110.8	101.4	88.0
I _c (20 К, 20 Т)	[A]	6.7	21.5	40.1	50.2
J _e (20 K, 20 T)	[A/mm ²]	66.9	55.4	50.7	44.0

HTS Cable Conductor for Compact Fusion Tokamak Solenoids, Zhai et al. *IEEE* doi: <u>10.1109/TASC.2022.3167343</u>

Advanced Conductor Technologies www.advancedconductor.com

Tests of straight samples in background field at SULTAN test facility planned as well as subscale CS coil tests

80 kA CORC[®] CICC to be tested in Sultan

Preparation of 6x1 with distributed conductor support

- Six 36-tape CORC[®] cables
- Estimated testing by July 2023
- Results by MT/EUCAS conferences

Hall array based quench detection for CICC

Designing Hall arrays for various cable and CICC geometries to monitor current distribution

Real-time inverse Biot Savart current recreation using Hall array data for a CORC[®] CICC triplet

J. D. Weiss, et al Quench detection using Hall sensors in CICC for fusion applications doi: 10.1088/1361-6668/abaec2. 76 K R. Teyber, et al CORC[®] cable terminations with integrated hall arrays for quench detection doi: 10.1088/1361-6668/ab9ef3. R. Teyber, et al Current distribution monitoring in fusion magnets doi: 10.1038/s41598-022-26592-2.

Recent advances in CORC[®] magnet development

How do we develop HTS magnet technology that is innovative and useful?

HTS Accelerator magnets: towards 20 T and beyond

Canted Cosine Theta magnets in collaboration with LBNL

COMB magnet being develop by FermiLab

120 mm OD Cos-Theta insert

C3 magnet: 6-layer 5 T dipole under development

C2 magnet: 4-layer 2.9 T dipole demonstrated

Both concepts want more flexible CORC[®] wires, with bending radius below 30 mm desired

- Tests and FEM modeling show flexibility in CORC[®] is a function of substrate thickness, tape width, winding angle, and friction between tapes
- A major effort to increase the bending flexibility of current production CORC[®] wires is under way at ACT
- Insert magnets with conductor friendly bends are being proposed for high-field testing in the near term

CORC[®] Common Coil insert magnets

CORC® Common coil insert magnets with large (>100 mm) bending radius

- Based on opposing racetrack coils wound from a high current CORC[®] cable
- Operated within the BNL 10 T LTS Common Coil outsert
- Powered: 1) separately at 5 6 kA (MDP coil), or 2) in series at 10 kA (STTR coil)

Winding technology for CORC[®] Common Coil inserts developed at CU/ACT

- Based on slated groove machined in pancake support plates
- Allows winding under tension while providing sufficient support

CORC® Common Coil manufacturing at CU/ACT

- MDP coil (2 single pancakes 4 turns) Wound and testing underway
- STTR coil (2 double pancakes 14 turns)

Development of prototype Ohmic Heating coil

First Ohmic Heating coil prototype based on CORC®

- Medium cable performance (I_c (16 T) 3.5 kA, J_e (16 T) = 150 A/mm²
- 2-layers, 6 turns per layer, ID 119 mm, OD 159 mm, 60 mm height
- 6 mm thick cable in 7 mm groove
- Clearance of 1 mm results in about 1 % conductor strain

Testing of Ohmic Heating coil

Testing done at ACT to high ramp-rates

- Current ramp rates up to 5 kA/s to 10 kA at 4 K
- Current distribution remained mostly homogeneous

Testing done at ASC-NHMFL: 14 T 160 mm outsert

- Repeated current ramping at 12 T into transition
- J_e 200 A/mm², JBr hoop stress 185 MPa
- No degradation after 68 stress cycles

- Prepare set of CORC[®] OH coils with higher current and current density to allow higher JBr stresses of 200 to 500 MPa
- Advanced Conductor Technolog www.advancedconductor
 - Test higher elongation of cable: (1 2 % axial strain)

Current sharing in CORC[®] cables

Can HTS cables with electrically coupled strands tolerate local strand-level dropouts, particularly when operated at elevated temperatures (20-77 K)?

See Virgina Phiffer's thesis:

"EXPERIMENTAL INVESTIGATIONS OF TAPE-TO-TAPE CONTACT RESISTANCE AND ITS IMPACT ON CURRENT DISTRIBUTION AROUND LOCAL IC DEGRADATIONS IN CORC® CABLES" FSU 2023

Making use of REBCO tapes with variable I_c (VIC tapes)

AMO funded project:

Cost-effective Conductor, Cable, and Coils for High Field Rotating Electric Machines

I_c vs location in CORC[®] wire with 27 tapes (2 mm wide)

82 turn Coil design

Coil winding at ACT

ACT facility for high-current testing at 20 – 60 K

Facility details

- Samples cooled with pressurized helium gas
- Liquid nitrogen pre-cooling of feeder cables
- Current capacity of 5 kA (continuous)
- Future expansion: 10 kA and 8 T magnetic field

Stirling GHe circulation system

Liquid nitrogen pre-cooling

> Superconducting CORC[®] feeder cables

Low-temperature sample space

VIC coil performance limit determined at 25 K

www.advancedconductor.com

- Coil was ramped into normal state at 50 A/s
- Peak field: 4.8 T on the conductor

superconducting to normal transition

Steady state operation at 25 K close to I_c

- Coil was ramped to 4021 A (87% I_c) and current was held constant
 - This is a current density of 395 A/mm² (J_w = 243 A/mm²)
- Voltage over coil after inductive decay was 0.11 mV at held current of 4021 A
 - Power dissipation is 0.44 W as measured over the terminations

Next steps

- What if instead of dropouts associated with intrinsic defects, we incorporated tape-to-tape joints?
 - Would we get away from tape length limitations?

Collaborative needs for CORC[®] development

Tape development

- Consistency still needs to be increased. ACT is working actively with tape manufacturers to qualify tapes and identify where improvements are needed
- Narrower widths (1 mm, 1.5 mm) could increase the flexibility of CORC[®] wires
- 20-25 μm thick substrates would hit the sweet spot in terms of size and J_e
 - Demonstrated value, but R&D effort of tape from commercial venders is stalled
 - Many challenges remain with tape handling of long lengths

CORC® development

- How do we work within the limitations of the REBCO that's currently commercially available?
- What variations in REBCO tape properties create challenges and how do we overcome them?
 - Pinning: Tapes are getting better, but batch-to-batch I_c variations are still on the order of 50 % or more
 - Geometry: Thickness variations across width and surface roughness can affect bending properties of CORC®
 - Mechanical properties: Some tapes allow bending onto smaller formers, allowing more compact CORC[®] to be wound. Why?

Magnet development

- We need to develop the technology as soon as possible
 - More testing to understand how the conductor ticks
 - Model coils, demonstrators

Thank you for your attention!

Extra slide: CORC[®] joint development

		CORC [®] cable joint
Joint dimensions [TxWxL]	mm	16 x 38 x 200
77 K Terminal resistance	nΩ	14.7
77 K Joint resistance	nΩ	51.4
4 K, 0 T Terminal resistance*	nΩ	0.3
4 K, 0 T Joint resistance*	nΩ	1.9
4 K, 8 T Joint resistance**	nΩ	8.3

*Determined at 200 A/s ramp rate

**Determined at 1000 A/s ramp rate

Dry copper Joint between two CORC[®] CICC

<u>4 K</u>					
Applied Field [T]	Average Resistance [nΩ]				
	Total	Round HTS	Flat HTS		
0	4.1	2.8	0.8		
4	5.2	3.0	1.3		
6	6.1	3.4	1.5		
8	6.9	3.6	1.9		

*Calculated using average voltages as measured on either side of sample

Extra slide: the anatomy of a CORC[®] conductor

- **Transverse cross section**
- Electrical Stabilizer in-case of conductor quench

Extra slide: CORC[®] high-field performance compared to other superconducting wires

www.advancedconductor.com

Weiss et al SUST (2020) https://doi.org/10.1088/1361-6668/ab72c6