Development of high-temperature superconducting CORC[®] power cables for use on Navy ships and electric aircraft

Danko van der Laan & Jeremy Weiss

Advanced Conductor Technologies & University of Colorado, Boulder, Colorado, USA

Sven Doenges & Kyle Radcliff Advanced Conductor Technologies, Boulder, Colorado, USA

Emelie Nilsson & Ludovic Ibanez

Airbus UpNext SAS, Toulouse France

Jean Rivenc Airbus SAS, Toulouse France

Chul Kim, Peter Cheetham & Sastry Pamidi

Center for Advanced Power Systems, Florida State University, Tallahassee, Florida 32310, U.S.A.

Lukas Graber, Zhiyang Zhu & Maryam Tousi

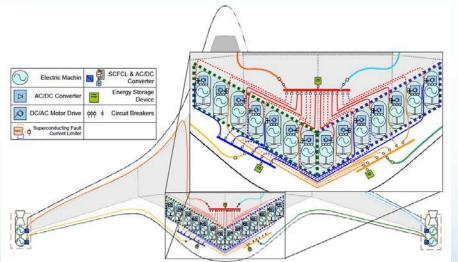
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, U.S.A.

Doan Nguyen Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.

Advanced Conductor Technologies

ASC22, Honolulu Hawaii, October 27th, 2022

US ELOS Alamos Georgia Tech


Considerations for the superconducting power bus in electric aircraft

Carbon-free passenger air travel

- May include transitioning to liquid hydrogen fuels and distributed electric propulsion
- But twin-aisle electric aircraft may require 25 MW during take-off

Conceptual design of a distributed propulsion electric grid by Rolls Royce for NASA

- Generators powered by jet engines
- Main busses between generators and distribution network that feed the motors

Armstrong M., et al., "Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid," NASA/CR—2015-218440

Superconducting electric powertrain by Airbus

- Liquid hydrogen fuel acts as cold source (20 K)
- Cooling of superconducting components by helium gas at 20 – 30 K

Image courtesy of Airbus

CORC[®] cables and wires pioneered by Advanced Conductor Technologies

Power cables for twin-aisle electric aircraft

- Require 25 MW dc power rating requiring currents of up to 5 kA and a voltage up 10 kV
- Won't allow any significant heating due to the high cost to remove heat from the aircraft
- Only superconducting cables can meet these requirements

Advanced Conductor Technologies is developing **CORC[®]** cables and wires for power applications

- Based on REBCO coated conductors
- Offering highly-flexible conductors
- High currents at high current densities
- Allowing low-resistance cable joints
- Having Fault Current Limiting abilities

CORC[®] performance

- 3 7.5 mm diameter
- Bending radius < 30 100 mm
- $I_{\rm c}$ (77 K) > 4,500 A, $J_{\rm e}$ (77 K) > 200 A/mm² •
- $I_{\rm c}$ (50 K) > 18,000 A, $J_{\rm e}$ (50 K) > 800 A/mm²

Advanced Conductor Technologies www.advancedconductor.com

Introduction ,D.C. van der Laan, J.D. Weiss and D.M. McRae, Supercond. Sci. and Technol. 32, 033001 (2019)

Geordia

Airbus ASCEND: first demonstration of CORC[®] cables for electric aircraft

Airbus ASCEND (Advanced Superconducting & Cryogenic Experimental powertrain Demonstrator)

- Ground based powertrain demonstrator of the various cold technologies needed for future electric aircraft •
- Identify showstoppers: technological, but also economical (size, weight) and visual (elegance) •
- Rated at 0.5 MW: operating current 1.7 kA (dc bus) 1.66 A rms (ac bus), operating voltage 300 V •
- Cooling with sub-cooled liquid nitrogen •
- Advanced Conductor Technologies was awarded the contract to deliver the dc and ac busses for ASCEND .
- Hardware delivery January 2023, demonstrator commissioning before June 2023 •

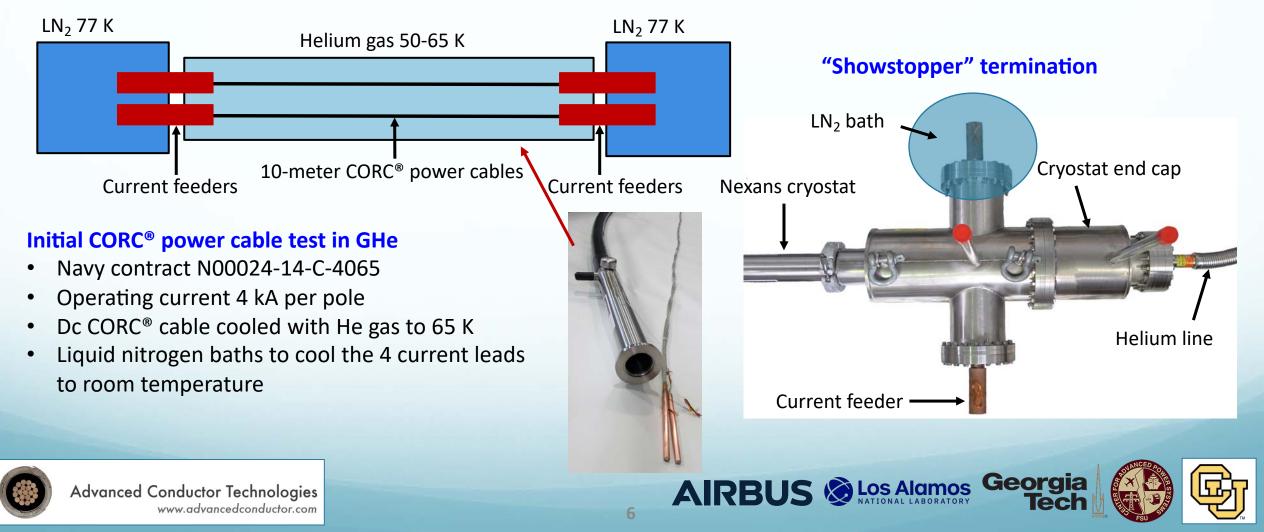
Although ASCEND uses LN₂, eventually gaseous helium (GHe) is required!

Airbus ASCEND: CORC[®] dc bus

Based on current CORC® technology

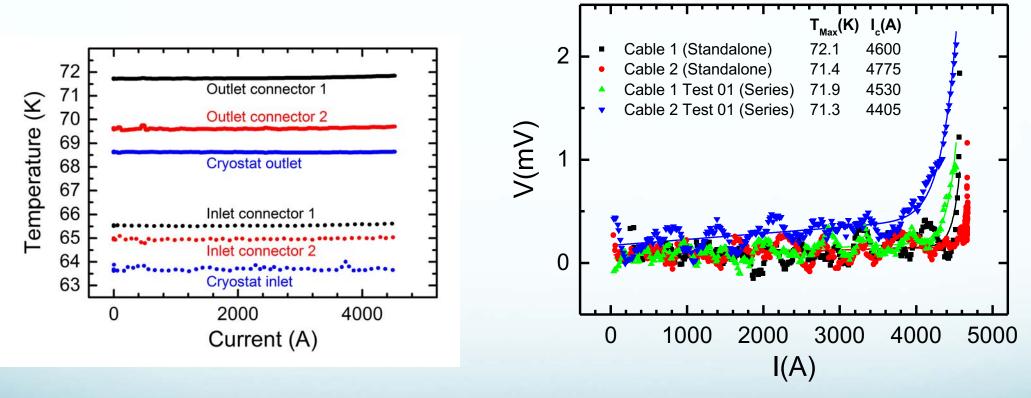
- Twisted-pair CORC[®] power cable, 10 meters in length
- Interfaces to room temperature (Connecting Device 1 "CD-1") and 100 120 K power electronics (CD-3)
- Sub-cooled liquid nitrogen for maximum cooling and low-risk dielectrics
- Operating current of 1.7 kA, but low voltage of 300 V (2 kV peak during fault)
- Fault Current Limiting (FCL) capability to limit 6.8 kA overcurrent fault for 10 ms

See talk 5LOrD-01 Emelie Nilsson (Airbus UpNext) at 8:00 AM tomorrow



Development of helium gas cooled CORC[®] power cables

Why cool with helium gas?

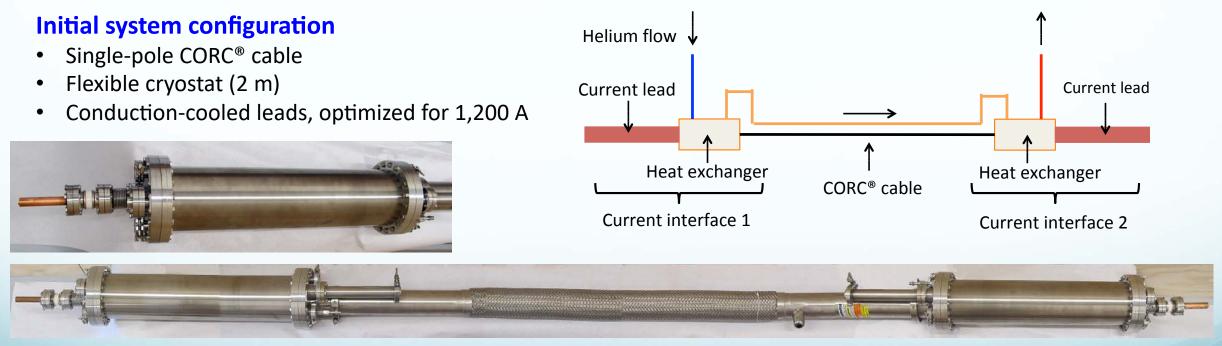

- Liquid nitrogen is incompatible as coolant between the liquid hydrogen tank and superconducting powertrain
- Lower operating temperatures with helium gas allows higher currents needed to achieve 25 MW power rating

Operation of helium gas cooled CORC[®] power cables

CORC® power cable test in GHe results

- Individual cable tests I_c (Cable 1) = 4,600 A, I_c (Cable 2) = 4,775 A
- Series connected cable tests I_c (Cable 1) = 4,530 A, I_c (Cable 2) = 4,405 A
- Results suggest that I_c at 50 K > 10,000 A

Development of CORC[®] cables for helium gas cooled power transmission and fault current limiting applications, D.C. van der Laan, J.D. Weiss, C.H. Kim, L. Graber and S. Pamidi, *Supercond. Sci. and Technol.* **31**, 085011 (2018)


Advanced Conductor Technologies www.advancedconductor.com

Georgia

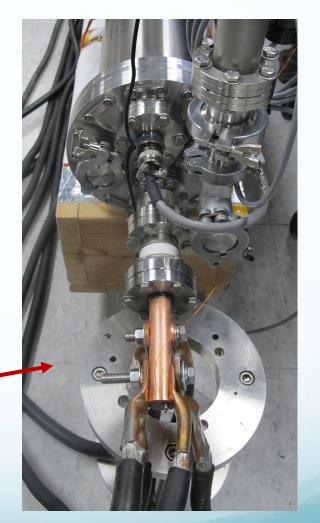
Development of compact CORC[®] cable terminations with 300 K interface

Development of compact cable terminations (Navy contract N68335-20-C-0648)

- Develop a compact cable interface between 50 K and room temperature
- Current leads with helium gas heat exchangers, removing all needs for LN₂ use
- Allow turn-key, continuous operation of the CORC[®] power cable system using pressurized helium gas cooling
- Initial design and demonstration using mainly off-the-shelf components

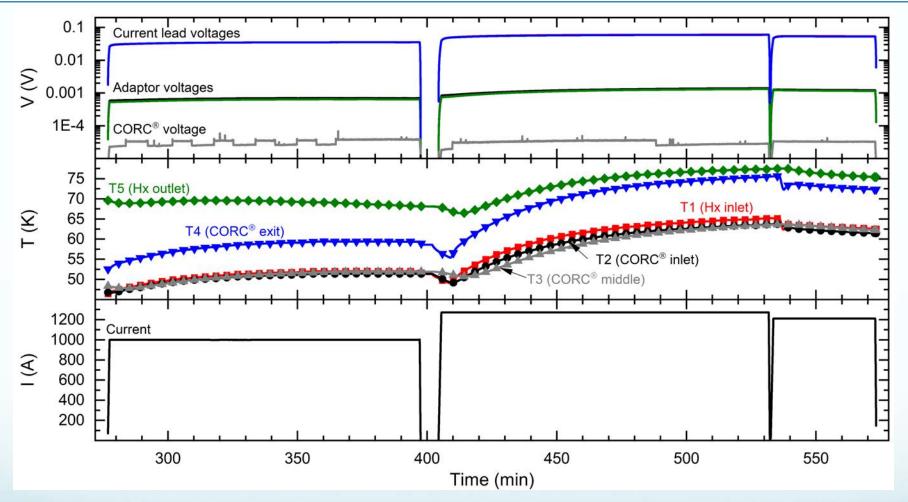
Operation of a turnkey, gaseous helium cooled CORC® dc power cable with integrated current leads, D.C. van der Laan, C.H. Kim, S. Pamidi, and J.D. Weiss, *Supercond. Sci. Technol.* **35**, 065002 (2022)

Advanced Conductor Technologies www.advancedconductor.com AIRBUS ELOS Alamos



Operation of GHe cooled CORC[®] cable with interface to room temperature

Stirling Cryogenics cryogeneratorwith helium gas flow loop at Advanced Conductor Technologies


Room temperature current lead connected to copper power cables

Results of GHe cooled CORC[®] cable with interface to room temperature

• Cool down from room temperature to operating temperature within 5 hours

10

AIRBUS Des Alamos Georgia

• Continuous operation at the rated current of 1,200 A demonstrated

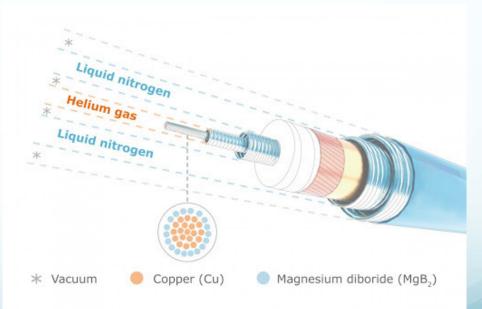
Development of 12 kV dielectrics for GHe cooled CORC® cables

"Conventional" HTS power cables

- Are cooled with sub-cooled LN₂, which is a good dielectric
- Contain a wrapped dielectric that's penetrated with LN₂
- This approach is currently being followed for the ASCEND demonstrator

High operating voltage exceeding 100 kV "easy" to achieve in $\ensuremath{\text{LN}_2}$

Example of land-based power cables that require GHe cooling


- NEXANS Best Paths cable project based on MgB₂
- Superconducting cable cooled with helium gas
- Wrapped dielectric remains cooled with LN₂ to achieve 320 kV rating

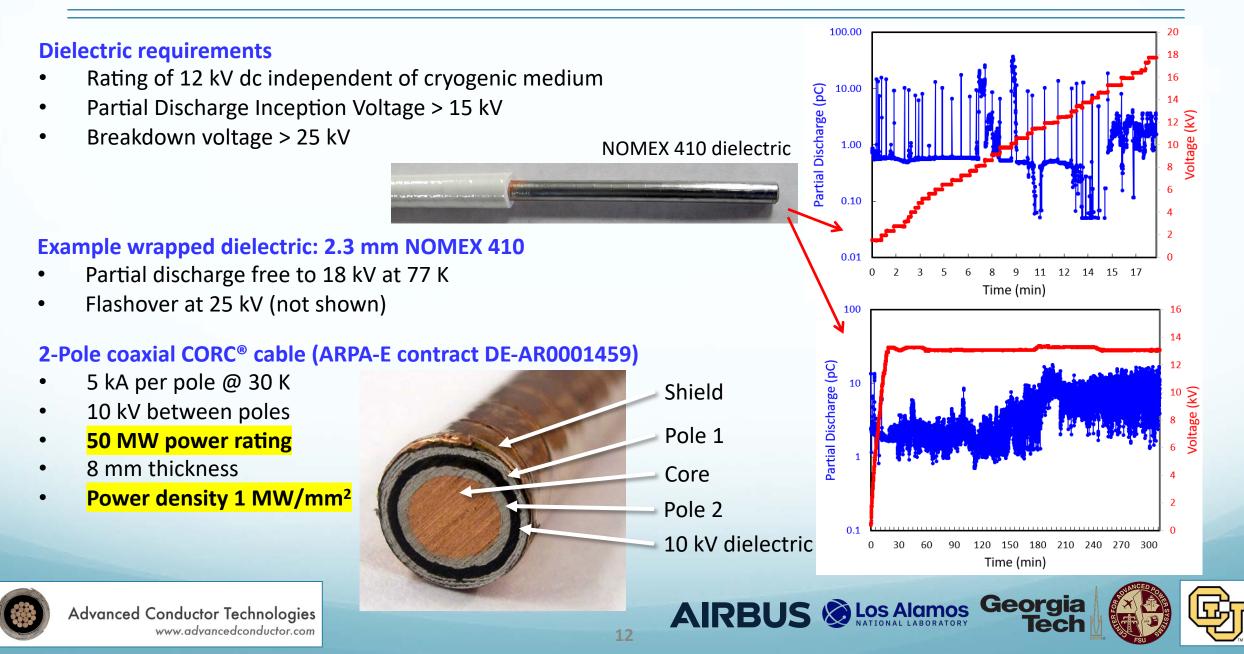
Our approach to reach 12 kV rating (Navy contract N68335-18-C-0151)

- Separate the CORC[®] cable from the coolant (helium gas)
- Prevent penetration of coolant into the cable dielectric

Image courtesy of SuperPower Inc.

NEXANS Best Paths cable http://www.bestpaths-project.eu/en/demonstration/demo-5

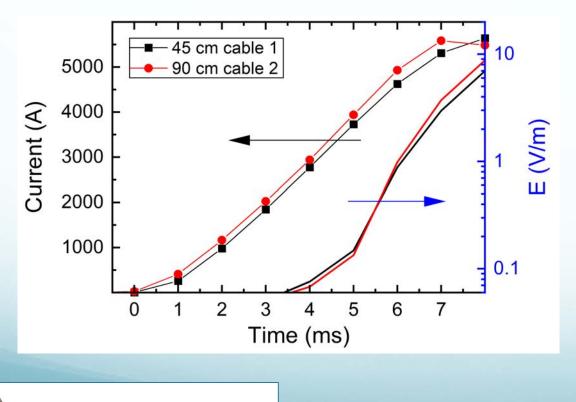
Los Alamos



Advanced Conductor Technologies www.advancedconductor.com

11

Development of coaxial CORC[®] cables rated 50 MW (5 kA and 10 kV)

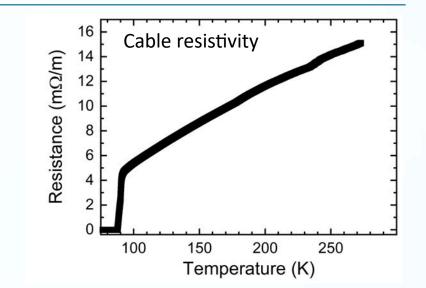


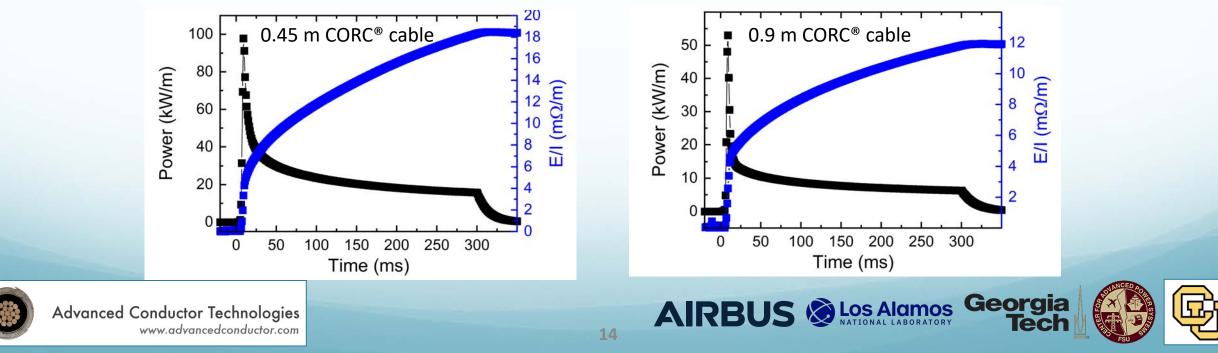
Development of CORC® FCL cables

13

CORC® FCL cable test

- Single-pole CORC[®] cable critical current 2.8 kA at 76 K
- Electric field > 7.5 V/m within 5 ms after 6 kA fault starts
- Current limited to less than 2 kA within 7 ms
- No damage to cable even after 300 ms of fault current


Considerations regarding CORC® FCL cables within electric aircraft


The energy dissipated within the CORC® FCL cable goes somewhere

- Heating initially confined within the REBCO tapes
- Energy transferred to coolant after 50 100 ms depending on thermal barrier formed by dielectric

Heat transfer to cryogen

- Peak dissipation 100 kW/m (0.45 m cable), 55 kW (0.9 m cable)
- Cable resistivity suggests > 300 K (0.45 m cable), 180 K (0.9 m cable)
- Likely results in phase transition (boiling) of LN₂
- Large increase in system pressure can be expected!

Summary

Superconductivity is an enabling technology for twin-aisle electric aircraft

- Required 25 MW of power during takeoff can't be achieved in a conventional distribution system due to its extremely high weight and excessive cable heating that needs to be removed
- Liquid hydrogen as a fuel makes superconducting power trains extremely attractive because there's no need for cryocoolers or liquid coolant storage
- Such a system would likely use helium gas as coolant of the superconducting system

CORC® cables offer a highly attractive solution for electric aircraft

- The 0.5 MW dc and ac busses of the Airbus ASCEND demonstrator will be based on CORC[®] cables, cooled with flowing sub-cooled liquid nitrogen
- CORC[®] cables have demonstrated their ability to operate at 4 kA in gaseous helium at 70 K, with a clear path to 5 – 10 kA at 30 K
- CORC[®] cable dielectrics have been developed to allow 12 kV dc operation, independent of cryogen
- A 50 MW 2-pole CORC[®] dc power cable has been developed

Superconducting cables have additional benefits for electric aircraft, but also require careful consideration

- CORC[®] power cables have demonstrated their ability to limit overcurrents as high as 3 times the operating current without burnout after 300 ms
- Potential pressure buildup in the cryogenic system during a fault has to be taken into account in a closedloop cooling system

15

AIRBUS & Los Alamos Georgia

