Work supported by U.S. Department of Energy awards numbers DE-SC0013723 and DE-SC0014009

Development of low-resistance CORC[®]-CICC joints for use in demountable magnets for fusion and their performance up to 10 kA within a background magnetic field of up to 8 T

Jeremy Weiss & Danko van der Laan

Advanced Conductor Technologies and University of Colorado Boulder, Colorado, USA

Steven Allen, Julian Holt, Ian Alsworth, Peter Daniels & Frank Schoofs United Kingdom Atomic Energy Authority, Oxfordshire, U.K.

Advanced Conductor Technologies www.advancedconductor.com

EUCAS 2021

Conductor-On-Round-Core (CORC[®]) magnet cables and wires

CORC® cables and wires (2.5-8 mm diameter)

- Wound from 2-4 mm wide REBCO tapes that are helically wrapped around a small copper former
- Typically no more than 50 tapes
- Performance as high as 5-10 kA and 300-600 A/mm² at 20 T
- Flexible with bending down to 50-100 mm diameter

CORC®-Cable In Conduit Conductor (CICC)

- Performance as high as 100,000 A (4.2 K, 20 T)
- Combination of multiple CORC[®] cables or wires
- Bending diameter about 1 meter

Image courtesy of T. Mulder

Advanced Conductor Technologies www.advancedconductor.com

Motivation

Access to the internals of a fusion reactor is difficult with magnet windings in the way. Plasma facing components must be assembled within the magnet windings, like building a boat in a bottle, which complicates maintenance and impacts reactor down-time.

One solution is to incorporate low resistance $(<5 n\Omega)$ joints within each turn in the Toroidal field coils, allowing them to be disassembled.

Terminations and joints are being developed for CORC[®] that are compact, robust and easy to incorporate into magnet designs

Schematic of robotic maintenance of JET facility

https://www.nature.com/articles/nphys3755/figures/1

Demountable joints allow better access to experiment

Route to demountable HTS magnets for fusion

Ensure even contact resistance where tapes are terminated

Terminate several CORC cables into joint structure

Simple joint test: Cu-to-Cu dry pressed contact between two flat samples (aiming for $< 5 n\Omega$ at 8 T)

An actual toroidal field coil could have 40-100 such joints. Example: 84 turns at 48 kA ~387 W given 1 nΩ resistance per joint

Advanced Conductor Technologies

Measurement on joint between two CORC[®] cables

What are the V(I,B) characteristics of a joint between two individual CORC[®] cables?

In-field joint test between CORC[®] cables

- Hairpin 30-tape CORC[®] cable sample is tested at 4.2K, followed by cutting the sample, adding a joint, and retesting in a background field
- Voltage measured over terminations to capture entire voltage over the cable (not just the voltage over a single tape)

Initial measurements on bent sample to get the

Second measurements on sample after cutting and adding a joint to get the Joint + terminal's contribution to resistance 16 x 38 x 200 mm

Terminal resistance

 $V = IR^{\text{term}}$

$$V = IR^{term} + IR^{joint}$$

V-tap **CORC**[®] hairpin OFHC Cu joint ($\rho = 0.13 \text{ n}\Omega$ -m) Advanced Conductor Technologies Magnet J.D. Weiss www.advancedconductor.com

V(I) before and after adding joint

Advanced Conductor Technologies www.advancedconductor.com

J.D. Weiss

ð,

UK Atomic Energy

V(I) of joint tested in-field at 1000 A/s up to 8 kA

Magneto-resistance effects exist and must be considered in demountable TF coils that will be operated within relatively large magnetic fields

Summary

		CORC [®] cable joint		
Conductor ID		170404		
Joint dimensions [TxWxL]	mm	16x38x200		
77 K Terminal resistance	nΩ	14.7		
77 K Joint resistance	nΩ	51.4		
4 K, 0 T Terminal resistance*	nΩ	0.3		
4 K, 0 T Joint resistance*	nΩ	1.9		
4 K, 8 T Joint resistance**	nΩ	8.3		

*Determined at 200 A/s ramp rate

**Determined at 1000 A/s ramp rate

Advanced Conductor Technologies

J.D. Weiss

XX.

UK Atomic Energy

Development of demountable CORC[®] joints

What are the characteristics of demountable HTS joints in significant applied fields?

UK Atomic Energy Authority

9

Three CICC sample layouts tested

Samples connected in series with dry contact Cu-to-Cu joint in 8 T solenoid magnet

Model and picture of assembled sample probe

Modeling and testing to verify contact pressure exceeds 10 MPa

FEM simulations to determine stresses in clamping structure and contact pressure within joint

Unit: MPa Time: 2

Max: 703.87 Min: 1.0427

20/08/2020 11:15 681.89 290 253.99 217.98 181.97 145.96 109.95 73.943 37.934 1.924

Equivalent Stress Type: Equivalent (von-Mises) Stress Custom Obsolete

Fuji-film pressed between copper joint Red shows > 10 MPa pressure

Using unannealed copper

Using annealed copper (2h @ 575 °C)

Advanced Conductor Technologies www.advancedconductor.com

Instrumentation summary

Voltage contact	Location			
V1	Overall sample voltage (left side)			
V2	Overall sample voltage (right side)			
V3	Voltage sample 1 (left side)			
V4	Voltage sample 1 (right side)			
V5	Voltage sample 2 (left side)			
V6	Voltage sample 2 (right side)			

V(I) of LTS sample pair at 4 K

1000 A/s

Advanced Conductor Technologies

www.advancedconductor.com

J.D. Weiss

14

ġ,

UK Atomic Energy

V(I) of HTS sample pair at 4 K

Exploring the cause of the high contact resistances in the HTS-to-HTS joint

Copper used by machine shop to make joint, not pure copper!

		Resistivity			
		293 К	76 K	4 K	RRR
Part	Temper	(nΩ*m)	(nΩ*m)	(nΩ*m)	(293K/4K)
annealed copper wire	H00 (1/8 CW)	17.08	1.93	0.08	225
half-hard copper wire	H02 (1/2 CW)	16.73	2.15	0.20	85
round CORC [®] CICC-01	As-received	19.36	4.55	2.61	7
round CORC [®] CICC-01	Annealed	18.14	4.30	2.38	8
plate CORC(r) CICC	As-received	18.20	2.19	0.20	90
plate CORC(r) CICC	Annealed	17.90	2.02	0.06	305
LTS CICC -01	As-received	17.83	2.25	0.22	83
LTS CICC -01	Annealed	17.52	1.96	0.07	257
LTS CICC-02	As-received	18.19	2.28	0.23	79
LTS CICC-02	Annealed	16.82	1.93	0.06	269

Soldering time strongly influences contact resistance in tape-to-tape lap joints made using indium solder

R_c increases by a factor of 2-4 between heating for 5 minutes and heating for 15 minutes – Likely mechanism is oxygen diffusion out of REBCO surface

Advanced Conductor Technologies

www.advancedconductor.com

V(I) of second HTS sample pair using pure copper and short heating time

1000 A/s

Advanced Conductor Technologies

www.advancedconductor.com

J.D. Weiss

XX.

UK Atomic Energy

Summary

- Development of cable-to-cable CORC[®] joints
 - 77 K: ~50 nΩ per joint (terminal resistance subtracted)
 - **4 K:** ~2 nΩ per joint (terminal resistance subtracted)
- Demonstration of demountable HTS CORC[®] CICC joints
 - Joint resistance at 4 K: ~4 nΩ for total sample loop consisting of 4 SCto-Cu interfaces and a dry Cu-to-Cu joint!
 - Depended on solving key issues that came up during R&D test campaigns:
 - Joint surface temper
 - Copper quality
 - HTS cable heating time when terminating
 - Flat HTS sample performed similar to LTS CICC conductor $1-2 n\Omega$ terminal to terminal resistance measured up to 8 T

Work supported in part by

U.S. Department of Energy awards numbers DE-SC0013723 and DE-SC0014009

Advanced Conductor Technologies www.advancedconductor.com

18

Extra slide - V(I) of HTS sample pairs at 76 K

Advanced Conductor Technologies

J.D. Weiss

UK Atomic Energy

Extra slide - Steady state operation of HTS sample pair at 4 K

- Current was ramped and then held constant to let transients die out and to • demonstrate steady state operation of joint.
- Max power dissipation of entire sample circuit (4K, 8T, 4605 A) is < 140 mW •
 - Current for steady-state test limited by vapor-cooled-leads

J.D. Weiss

XX.

UK Atomic Energy