This work was in part supported by the US Department of Energy under agreement numbers DE-SC0014009 and DE-SC0018706.

CORC[®] conductors with integrated fiberoptics and voltage wires for quench detection

Jeremy Weiss and Danko van der Laan

Advanced Conductor Technologies & University of Colorado, Boulder, Colorado, USA

Federico Scurti and Justin Schwartz

Pennsylvania State University

Advanced Conductor Technologies www.advancedconductor.com

Applied Superconductivity Conference 2020

Wk1LOr2B-06 - Special Session: Recent Cable Achievements for Fusion Magnets

Conductor-on-Round-Core (CORC[®]) magnet cables and wires wound from **HTS ReBCO tapes**

Transverse cross section

	CORC	[®] wires	CORC [®] cables		
Conductor diameter	2.5 to	4.5 mm	5 to 8 mm		
Min bending radius	> 25 mm		> 50 mm		
Temperature, Field	4.2 K, 20 T	30 K, 8 T	4.2 K, 20 T	30 K, 8 T	
Current	> 5,000 A	> 3,500 A	> 10,000 A	> 7,500 A	
Current density	Up to 450 A/mm ²	Up to 340 A/mm ²	Up to 600 A/mm ²	Up to 450 A/mm ²	

Conductor-on-Round-Core (CORC[®]) magnet cables and wires wound from HTS ReBCO tapes

Courtesy of Tim Mulder

	CORC [®] wires		CORC[®] cables		CORC [®] Conductor-in-Conduit (CIC)			
Conductor diameter	2.5 to 4.5 mm		5 to 8 mm		20 to 45 mm			
Min bending radius	> 25 mm		> 50 mm		> 500 mm			
Temperature, Field	4.2 К, 20 Т	30 K, 8 T	4.2 K, 20 T	30 K, 8 T	4.2 K, 20 T	30 K, 8 T		
Current	> 5,000 A	> 3,500 A	> 10,000 A	> 7,500 A	> 60,000 A	> 45,000 A		
Current density	Up to 450 A/mm ²	Up to 340 A/mm ²	Up to 600 A/mm ²	Up to 450 A/mm ²	> 50 A/mm ²	> 30 A/mm ²		

CERN

Why is quench detection difficult with high-temperature superconductors (HTS)?

HTS is not LTS

Fundamental issues

- Temperature margin is high
- Magnet operation often far from critical surface T_{opp} << T_c (actually good things)

Implications

Quench propagation velocity is (relatively) slow

- Heat capacity @ T_c >> than in LTS
- Non-propagating hot spots can develop
- Burnout?

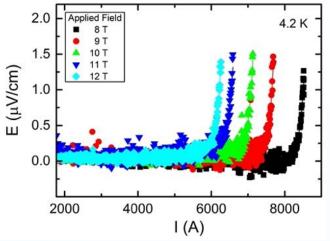
Solutions? -

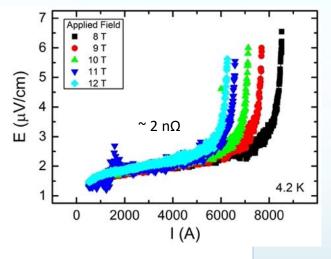
Active diagnostics

• Sensing electric field perturbations

- Voltage taps are tried and true, but signals can be hidden by noise
- Sensing temperature/strain perturbations
 - Fiber optics
 - Acoustic thermometry
- Sensing magnetic field perturbations
 - Pickup coils
 - Hall sensors

Magnet protection


- Traditional protection schemes
 - Dump resistors, coupled inductors, etc
- Spread out the hot spot
 - Active protection (ex quench heaters)
 - Artificially improve quench propagation velocity (requires lots of energy)
 - Passive protection with current sharing
 - Keep voltage across hot-spots in single ReBCO strands low
 - High-currents and low inductance help



Voltage tap quench detection

E measured locally on 3.4 mm CORC[®] wire

E measured over terminals

Advanced Conductor Technologies www.advancedconductor.com V-taps work great for small separation distance, but we need to know where to put voltage taps and how often

Signal to noise ratio of a localized quench attenuates with length between voltage taps

Measuring a coil is tricky because the large inductance of the coil makes voltage measurements very sensitive to small changes in field/current

Voltage tap wire can be co-wound with conductor to cancel out coil inductance, but this can be technically challenging, and any separation creates a loop

Weiss et al. *SUST*, **2020** <u>https://doi.org/10.1088/1361</u> <u>-6668/ab72c6</u>

Present anatomy of a high Je CORC® wire

2 mm wide REBCO Tapes (60-40% area)

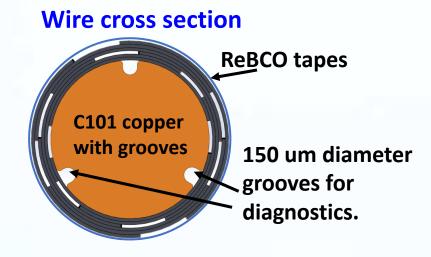
- Hastelloy (51%)
- Copper (17%)
- Void/lubricant (17%)
- CORC[®] insulation (8%)
- Silver (4%)
- ReBCO (2-3%)

Transverse cross section

Advanced Conductor Technologies www.advancedconductor.com

Core / former (40-60% area)

- -60% area)
- Typically OFHC copper
- Could be stronger
- Could be functional
- Can we build diagnostic hardware into the CORC[®] core?



Integrated diagnostics Smart conductors for complicated times

CORC[®] Wires with integrated diagnostics

Voltage tap exits the CORC wire termination

Grooved former allows integrated voltage taps, optical fibers, quench heaters, etc.

Advanced Conductor Technologies www.advancedconductor.com **B**

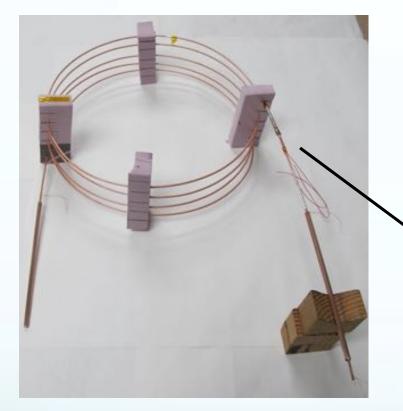
CORC[®] Wires with integrated diagnostics

Grooved former allows integrated voltage taps, optical fibers, quench heaters, etc.

Voltage tap wires

- Polyimide insulated wire
- follows the same path as the CORC®
- Is protected by being embedded within the former

Fiber optic wire


- Uses Rayleigh scattering
- Distributed sensing of changes in strain/temperature along length of conductor
- Intimate contact within conductor

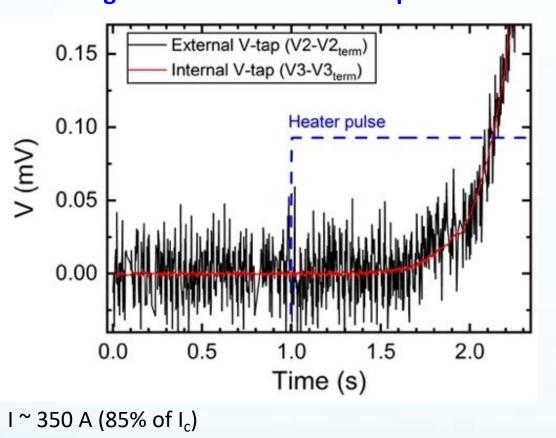
Two CORC® wire samples tested

Long 5 m sample

Short ~0.5 m sample

Long sample was tested and then cut into shorter sample to re-test, so heater sections are identical

Two heaters: 5 mm long coiled heater 50 mm long strip heater

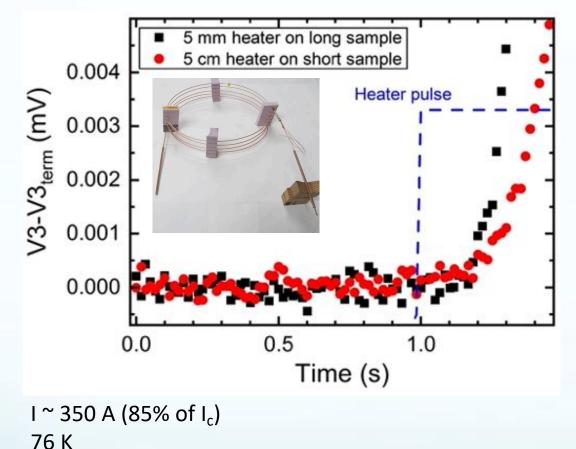

Voltage measured using external voltage taps, and internal (embedded) voltage taps

~5 mm heater

Voltage measured using heater induced hotspot

Voltage measured over the sample terminations

Internal V-Tap wire is tightly confined within **CORC**[®] wire following the current-path with almost no separation


Noise is much lower for internal V-Tap compared to external V-tap

76 K

Voltage measured using heater induced hotspot

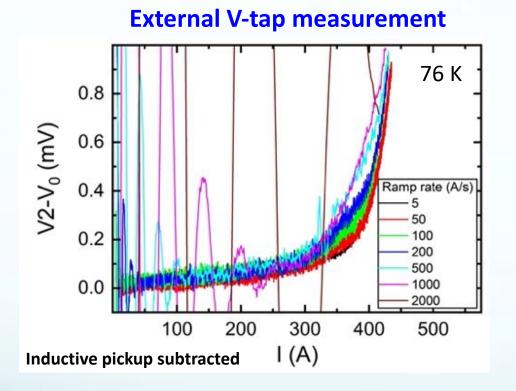
Internal V-Tap wire is tightly confined within CORC[®] wire following the current-path with almost no separation

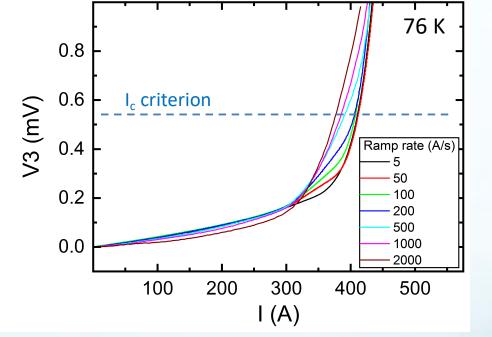
Noise is much lower for internal V-Tap compared to external V-tap

5 m Long sample compared to 0.5 m Long sample show similar noise floor

Very little inductive pick-up, even at very high current ramping

Van der Laan et al. *SUST*, **2020** <u>https://doi.org/10.1088/1361</u> <u>-6668/ab9ad1</u>

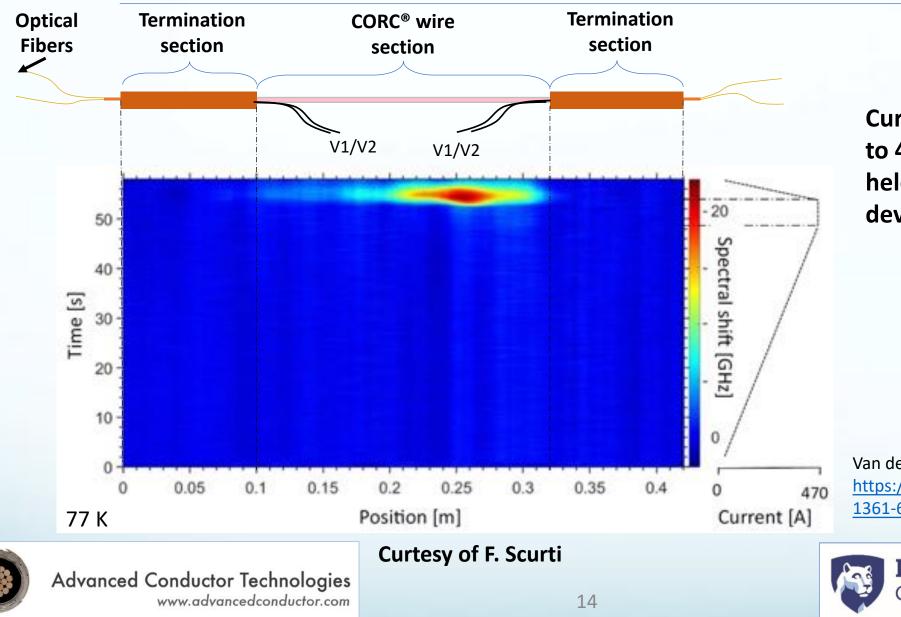




Ramp-rate dependence of V(I) data

Data taken on Long (5m) sample

External V-tap measures inductive pickup and data in general is noisier than that taken with internal V-taps

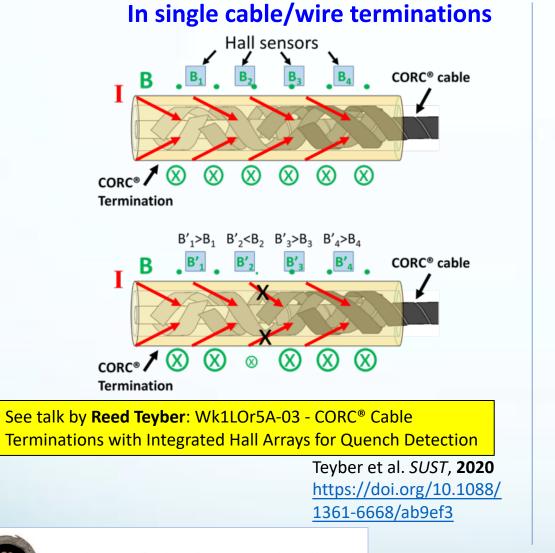


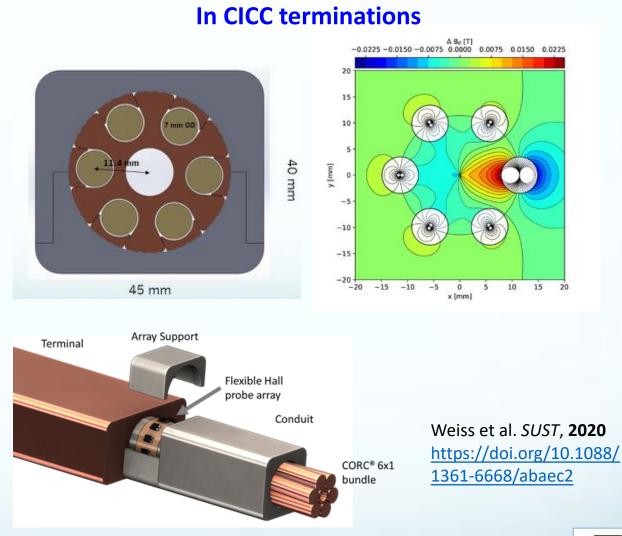
Internal V-tap measurement

Temperature rise measured via optical fibers

Current ramped over 48 s to 470 A (140% I_c) and held constant as hot spot develops and propagates

Van der Laan et al. **SUST** https://doi.org/10.1088/ 1361-6668/ab9ad1


Terminal integrated diagnostics


Measuring current redistribution between CICC strands due to hot-spots

Magnetic field perturbations measured by Hall sensors when current redistributes

Summary

CORC® wires and cables with integrated diagnostics, a promising innovation

- CORC[®] Cables and wires with embedded sensors have many advantages
 - Accurate voltage measurements
 - Compensated inductance
 - Elimination of sample-length dependent noise
 - Distributed strain and temperature sensing with optical fibers
 - Can localize where hotspots begin
 - Can follow evolution of quench propagation
 - Mechanical protection of sensing wires
- Terminations with integrated Hall sensors also being explored
 - Effective diagnostic tool
 - Potential quench detection strategy for HTS

See Federico Scurti's talk for more on Optical Fiber measurements: Wk1LOr4C-03

Recent CORC® Publications

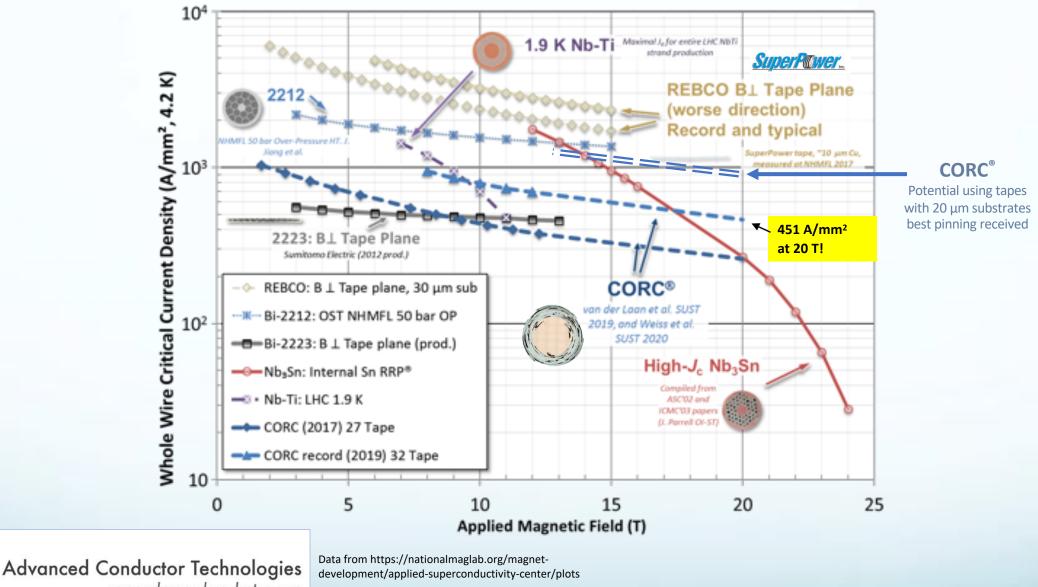
Topical review on 10 years of CORC® progress (2009-2019)

- Covers everything from conductor development to joints and magnets
- <u>https://doi.org/10.1088/2F1361-6668/2Faafc82</u>

Recent publications (2019-2020)

- CORC[®] CICC with integrated Hall sensors, Weiss et al SUST <u>https://doi.org/10.1088/1361-6668/abaec2</u>
- CORC[®] terminals with integrated Hall sensors, Teyber et al SUST <u>https://doi.org/10.1088/1361-6668/ab9ef3</u>
- CORC[®] solenoid magnet tested in 14 T LTS outsert, van der Laan et al SUST <u>https://doi.org/10.1088/1361-6668/ab7fbe</u>
- AC loss and contact resistance studies, <u>Yagotintsev</u> et al SUST <u>https://doi.org/10.1088/1361-6668/ab97ff</u>
- CORC[®] wires with integrated Fibers and V-taps, van der Laan et al SUST <u>https://doi.org/10.1088/1361-6668/ab9ad1</u>
- CORC[®] wires made with 25um Sub tapes, <u>Weiss</u> et al **SUST** <u>https://doi.org/10.1088/1361-6668/ab72c6</u>
- Progress on CORC[®] CICC development, <u>Mulder</u> et al IEEE <u>https://doi.org/10.1109/TASC.2020.2968251</u>
- Development of CORC[®] for FCL applications, <u>Weiss</u> et al **SUST** <u>https://doi.org/10.1088/1361-6668/aafaa7</u>
- 1.2 T CCT magnet demonstrator, <u>Wang</u> et al **SUST** <u>https://doi.org/10.1088/1361-6668/ab0eba</u>
- Axial tension and fatigue testing, van der Laan et al SUST <u>https://doi.org/10.1088/1361-6668/ab06a3</u>

Papers and presentations from conferences and workshops available online


<u>https://www.advancedconductor.com/technicalinformation/</u>

Not possible without the support of DOE, the US Navy, and various collaborators. Thank you!

CORC[®] J_e comparison to high-field magnet wires

www.advancedconductor.com