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Conductor on Round Core (CORC®) cables

CORC® cable principle based on strain management 
Winding many high-temperature superconducting REBCO coated 
conductors from SuperPower in a helical fashion with the REBCO under 
compression around a small former to obtain high cable currents

Benefits of CORC® cables include
• Round and isotropic
• Very high currents and current densities
• Highly flexible in any direction
• High level of conductor transposition
• Current sharing between tapes 

Single tape wound into a CORC® cable
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CORC® magnet cables and wires

CORC® wires (2.5 – 4.5 mm diameter)
• Wound from 2 – 3 mm wide tapes  
• Tapes have 25 – 30 µm thick substrates
• Typically no more than 30 tapes
• Highly flexible: bending down to 50 mm diameter

CORC® cable (5 – 8 mm diameter)
• Wound from 3 – 4 mm wide tapes 
• Tapes have 30 – 50 µm thick substrates
• Typically no more than 50 tapes
• Flexible: bending down to > 100 mm diameter

CORC®-Cable In Conduit Conductor (CICC)
• Performance as high as 100,000 A (4.2 K, 20 T)
• Combination of multiple CORC® cables or wires
• Bending diameter down to about 1 meter
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CORC® conductor development for magnet applications

CORC® conductors for accelerator magnets
(Main sponsor DOE – High Energy Physics)
• Engineering current density Je(20 T) > 600 A/mm2

• Operating currents 10 – 20 kA
• Small cable bending diameters 20 − 50 mm

Large Hadron Collider at CERN

CORC® conductors for HTS fusion magnets
(Main sponsor DOE – Fusion Energy Sciences)
• Operating current 10 – 100 kA
• Operating temperature 4.2 – 40 K
• Develop low-resistance CORC® cable joints for 

use in demountable fusion magnets

Fusion National Science Facility
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CORC® cable production

Winding of long CORC® cables with custom 
cable machine
• Accurate control of cable layout
• Long cable lengths possible (> 100 meters)
• Ic retention after winding 95-100 %
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Cumulative CORC® production
• about 800 meters since 2012
• includes 430 meters for commercial 

orders (including about 140 meters 
for open orders)
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CORC® magnet development
Demonstrating a functional magnet that operates at high current, current 

density, and stress 
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High-field insert solenoid wound from CORC® cables

Address main challenges of low-inductance HTS magnets 
• Operate CORC® insert solenoid in 14 T background field
• CORC® insert should have meaningful bore: 100 mm diameter
• High operating current: 4,000 – 5,000 A
• High current density: Je > 200 A/mm2

• Significant JBr source stress >250 MPa

CORC® insert layout
• 100 mm inner diameter, 143 mm OD
• 4 layers, 45 turns
• 18.5 m of CORC® cable
• Wet-wound with Stycast 2850 Epoxy
• Stainless steel overbanding between layers

CORC® cable layout
• 28 REBCO tapes of 3 mm width containing 30 µm substrates
• 4.56 mm CORC® cable outer diameter

Phase II SBIR in collaboration with ASC-NHMFL

CORC® coil 
cross-section
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CORC® insert magnet design features

CORC® insert had to be mechanically bolted to LTS magnet, so the coil was 
mechanically de-coupled from the header
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2.0 T CORC® coil
w/ 100 mm bore

CORC® S-Bend through G10 slots utilizes 
CORC® flexibility to allow vertical travel of 
insert due to CTE mismatch between 
probe/coil-insert and LTS magnet

14 T LTS 
w/ 161 
mm bore

Top view

SS overbanding



CORC® magnet winding

Wet-winding with Stycast

Co-wound voltage contacts 
and glass rope 

Interlayer stainless steel 
overbanding
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CORC® magnet winding (Cont.)
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CORC® magnet installation
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CORC® magnet test preparation

Magnet test details
• 14 T LTS outsert with 161 mm cold bore
• Insert current up to 7.2 kA with 6 Sorenson 1.2 kA 

supplies in parallel
• Insert magnet protection includes dump resistor, 

high-current diodes and contactors to disconnect 
the power supplies 
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CORC® magnet test: 77 K, stand-alone

Results 77 K, stand-alone
• 0.63 T on conductor (at Ic)
• Hall probe: 0.42 T central field (at Ic)
• Voltage measured with co-wound wires
• Ic = 1,043 A @ 1 µV/cm (18.5 m contact length)
• n-value = 24.2
• Contact resistance 178 nΩ
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CORC® magnet test: 8 T background field

50 A/s

Results 8 T background field at 4.2 K
• Current ramped to 6 kA and back at 50 A/s
• No superconducting transition measured
• Inductive voltage shows many spikes from possible conductor movement
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CORC® magnet test: 10 T background field
Results 10 T background field
• Peak current 5,500 A; central field 12.68 T, field on conductor 13.8 T
• Ic = 6,485 @ 1 µV/cm 
• Ic = 5,410 @ 0.1 µV/cm 
• Voltage spike tripped quench detector at 3 mV
• Dump of insert energy triggered partial LTS quench
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CORC® magnet test: 14 T background field

Results 14 T background field
• Maximum current 4,200 A to avoid quench trigger
• Ic = 4,404 @ 0.1 µV/cm
• Contact resistance 11.1 nΩ
• 15.86 T central field
• 16.77 T on conductor
• JBr source stress 275 MPa
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Voltage rise in each layer observed without thermal runaway

4-layer 2.9 T CCT dipole magnet (90 m of CORC® wire)

Current sharing between REBCO tapes in CORC® cables:
an important feature for magnet protection

Feather M2 HTS dipole magnet demonstrator (18.5 m Roebel cable)

Nugteren et al. SUST 2018
https://doi.org/10.1088/1361-
6668/aab887

Xiaorong Wang: See talk Wk1LOr4B-02 - Development 
of Canted-CosΘ dipole magnets using CORC® wires

Je > 500 Amm-2
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CORC® magnet test: final test at 10 T

Performance after measurement campaign 
• Black curve: first measurement at 10 T followed by quench protection trigger
• Red curve: final measurement at 10 T after 10, 12 and 14 T tests, and 10 

stress cycles at 10 T to 5 kA (220 MPa hoop stress)
• First 10 T test: Ic = 5,410 @ 0.1 µV/cm 
• Final 10 T test: Ic = 5,315 @ 0.1 µV/cm (16th run)

No degradation in CORC® performance 
after full measurement campaign 
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CORC® insert solenoid test: summary

Applied field 
[T]

Central field 
at Ic [T]

Peak field 
at Ic [T]

Ic (0.1 
µV/cm) [A]

n-value
[-]

Jw
[A/mm2]

Je
[A/mm2]

10 12.25 13.35 5,315 7.9 203.9 340.3

12 14.08 15.09 4,908 9.1 188.3 314.2

14 15.86 16.77 4,404 10.5 168.9 281.9

CORC® insert impact
• First HTS insert magnet tested at high current (>1 kA) in a background field
• Highly stable operation into flux flow regime
• Stable operation likely due to current sharing between tapes in the CORC® cable
• Combination of high I, Jw and JBr demonstrated at 16.8 T peak field

D. C. van der Laan, et al., 
Supercond. Sci. Technol. (2020) 
https://doi.org/10.1088/1361-6668/ab7fbe
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Future CORC® wire development
Increasing current density, strength, and functionality further 
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Thinner tapes with better pinning lead to much 
higher Je in CORC® wires

As you add more layers to the CORC® wire, its Je
increases towards the tape Je

Substrate thickness is decreasing
• 30 µm now available
• 25 µm tape has been produced
• 20 µm would enable Je of 600 Amm-2 at 20 

T in a 2.4 mm diameter wire

Pinning force is increasing
• More control over artificial pinning centers
• Evidenced by higher lift factors

Projected Je vs wire diameter of CORC® wires using 
received tapes with subpar and best pinning

Nod to SuperPower for the 
rigorous R&D effort!

Tape lengths are increasing
• Delivered tape lengths 

exceeding 100-300 m are now a 
regular occurrence
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Assumptions for calculation:
-Realistic winding parameters
-Tape Ic (77K, SF) = 35 A/mm width

(4.2 K, 20 T / 77, 0 T) 

Tape widths are decreasing
• 1 mm and 1.5 mm slitting



Data from https://nationalmaglab.org/magnet-
development/applied-superconductivity-center/plots

CORC®

Potential using tapes 
with 20 µm substrates 
best pinning received

451 A/mm2

at 20 T!

CORC® Je comparison to high-field magnet wires

Danko van der Laan: See talk Wk2LOr5C-03 - Recent 
progress on CORC® cable and wire development for 

magnet applications
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Anatomy of a high Je CORC® wire

2 mm wide REBCO Tapes
(60-40% area)

• Hastelloy (51%)
• Copper (17%)
• Void/lubricant (17%)
• CORC® insulation (8%)
• Silver (4%)
• ReBCO (2-3%)

Core / former
(40-60% area)

• Typically OFHC copper
• Can be functional

• Integrated diagnostics
• Can be stronger

Transverse cross section
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CORC® wires using high-strength formers being developed

Critical stress significantly increased by 
using stronger former material

76 K

Annealed 
Cu former

Hardened
Cu former

High-current tensile tests 
performed in liquid nitrogen

Samples loaded by pulling 
on their terminations
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Summary

Successful test of a high-current, high-field, HTS insert solenoid (first of its kind)
• 19 m of CORC® wire successfully wound into a 45-turn magnet
• CORC® flexibility utilized in current-leads between magnet and CORC® termination
• High current operation demonstrated in a 14 T background field: > 4,000 A (4.2 K, 16.8 T)
• 16 high-current tests in background fields ranging from 10-14 T
• CORC® magnet operated into flux-flow regime, allowing current to be safely turned 

around as superconducting-to-normal transition was gradual
• High current densities > 650 A/mm2 (4.2 K, 12 T) demonstrated in next generation CORC® 

wire
• High-strength CORC® capable of withstanding stresses in excess of 250 MPa being 

developed

25



26

Topical review on 10 years of CORC® progress (2009-2019) 
• Covers everything from conductor development to joints and magnets
• https://doi.org/10.1088/2F1361-6668/2Faafc82

Recent publications (2019-2020)
• CORC® CICC with integrated Hall sensors, Weiss et al SUST https://doi.org/10.1088/1361-6668/abaec2
• CORC® terminals with integrated Hall sensors, Teyber et al SUST https://doi.org/10.1088/1361-6668/ab9ef3
• CORC® solenoid magnet tested in 14 T LTS outsert, van der Laan et al SUST https://doi.org/10.1088/1361-6668/ab7fbe
• AC loss and contact resistance studies, Yagotintsev et al SUST https://doi.org/10.1088/1361-6668/ab97ff
• CORC® wires with integrated Fibers and V-taps, van der Laan et al SUST https://doi.org/10.1088/1361-6668/ab9ad1
• CORC® wires made with 25um Sub tapes, Weiss et al SUST https://doi.org/10.1088/1361-6668/ab72c6
• Progress on CORC® CICC development, Mulder et al IEEE https://doi.org/10.1109/TASC.2020.2968251
• Development of CORC® for FCL applications, Weiss et al SUST https://doi.org/10.1088/1361-6668/aafaa7
• 1.2 T CCT magnet demonstrator, Wang et al SUST https://doi.org/10.1088/1361-6668/ab0eba
• Axial tension and fatigue testing, van der Laan et al SUST https://doi.org/10.1088/1361-6668/ab06a3

Recent CORC® Publications

Not possible without the support of DOE, the US 
Navy, and various collaborators.  Thank you!

Papers and presentations from conferences and workshops available online
• https://www.advancedconductor.com/technicalinformation/
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