

Development of high-temperature superconducting CORC[®] power cables for use on Navy ships and electric aircraft

Danko van der Laan & Jeremy Weiss

Advanced Conductor Technologies & University of Colorado, Boulder, Colorado, USA

Sven Doenges

Advanced Conductor Technologies, Boulder, Colorado, USA

Chul Kim, Peter Cheetham & Sastry Pamidi

Center for Advanced Power Systems, Florida State University, Tallahassee, Florida, USA

Lukas Graber, Zhiyang Jin & Maryam Tousi

Georgia Institute of Technology, Atlanta, Georgia, USA

Doan Nguyen

Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Advanced Conductor Technologies www.advancedconductor.com

EUCAS, September 9th, 2021

The Need for High Power Dense Superconducting Cables

Many future applications require compact, lightweight superconducting cables capable of delivering 10 – 50 MW of power in confined spaces.

Electric ship applications

- The U.S. Navy is developing HTS dc power cables for shipboard applications
- Size and weight are an important consideration, while liquid cryogens should be avoided

Image courtesy of General Atomics

Electric aircraft

- Efforts to develop electric aircraft are ramping up
- Size, weight and reliability are important, while future use of liquid hydrogen as a fuel may ease cooling requirements

Image courtesy of Airbus

Advanced Conductor Technologies www.advancedconductor.com

2

CORC® Power Cables and Wires

Advanced Conductor Technologies is developing CORC[®] cables and wires for power applications

- Based on REBCO coated conductors
- Offering highly-flexible conductors
- Carrying high currents at high current densities
- Allowing low-resistance cable joints
- Having Fault Current Limiting abilities

Typical CORC[®] cable

- 7.5 mm diameter cable with 42 tapes
- I_{c} (50 K) = 18,000 A, J_{e} (50 K) = 400 A/mm² •

Typical CORC[®] wire

- 3.6 mm diameter wire with 30 tapes
- $I_{\rm c}$ (77 K) = 4,500 A, $J_{\rm e}$ (77 K) = 100 A/mm² $I_{\rm c}$ (77 K) = 2,000 A, $J_{\rm e}$ (77 K) = 200 A/mm²
 - I_{c} (50 K) = 8,000 A, J_{e} (50 K) = 800 A/mm²

Technical Challenges to Overcome

To achieve reliable delivery of high electric power in dc CORC[®] cables requires

- Operation with pressurized helium gas cooling
- High current operation at 2,000 10,000 A
- Operating voltage of up to 12 kV
- Efficient current injection from room temperature
- High level of serviceability

Advanced Conductor Technologies has several programs in place to solve these technical challenges

U.S. Navy

Several Small Business Innovative Research (SBIR) grants awarded since 2013:

- N00024-14-C-4065 (He gas cooled cables)
- N00024-16-P-4071 (CORC[®] FCL cables)
- N68335-18-C-0151 (CORC[®] cable dielectrics)
- N68335-20-C-0648 (Cable interface to 300 K)

DOE, ARPA-E

A three-year program was selected for award to develop power cables for twin-aisle electric aircraft

- Coaxial CORC[®] dc FCL power cables and connectors
- Operation at 5 kA, 10 kV (50 MW)

Development of High-Current CORC[®] Power Cables

The goal is to develop and demonstrate high-current operation in a 10-meter long 2-pole CORC[®] power cable cooled with pressurized flowing helium gas.

Not part of the initial program (N00024-14-C-4065)

- Cable dielectric (no voltage rating)
- Helium gas cooled current leads (still requires LN₂ pre-cooling)

Components

- 10-meter long, 2-pole dc CORC[®] power cable
- All cryogenic hardware
- Current feeders between LN₂ and GHe environment
- Connectors between feeder and power cables

10-Meter 2-Pole CORC® DC Power Cable

10-Meter 2-Pole CORC[®] Power Cable Test

Test procedure

- Individual cable tests I_c (Cable 1) = 4,600 A, I_c (Cable 2) = 4,775 A
- Series connected cable tests I_c (Cable 1) = 4,530 A, I_c (Cable 2) = 4,405 A
- Results suggest that I_c at 50 K > 10,000 A

High-Voltage HTS Cable Dielectrics

"Conventional" HTS power cables

- Are cooled with sub-cooled LN₂, which is a good dielectric
- Contain a wrapped dielectric that's penetrated with LN₂

High operating voltage exceeding 100 kV "easy" to achieve

NEXANS Best Path cable http://www.bestpaths-project.eu/en/demonstration/demo-5

Land-based power cables that require GHe cooling

- NEXANS Best Path cable project based on MgB₂
- Superconducting cable cooled with helium gas
- Wrapped dielectric remains cooled with LN₂ to achieve 320 kV rating

The Need for CORC[®] Cables With LN₂-Free Dielectrics

Overall goals

- Shipboard applications (Navy): 12 kV dc in helium gas cooled twisted-pair CORC[®] cables, while not allowing liquid cryogens
- Electric aircraft applications (ARPA-E): 10 kV in coaxial dc CORC[®] cables, independent of cooling method

Perfect example: AIRBUS ASCEND

- Liquid hydrogen onboard as fuel and cold buffer
- Cooling of the superconducting components to 30 – 120 K likely through helium gas
- Operating voltage of ASCEND below 500 V, but future systems require much higher operating voltage to achieve 25 – 50 MW for take-off (5 kA x 5 – 10 kV)

Image courtesy of Airbus

Electric aircraft will face similar dielectric challenges as naval applications!

Dielectrics for Helium Gas Cooled CORC[®] Cables

Partial Discharge (PD) measurements at 77 K

Preventing helium gas penetration significantly reduces the partial discharge

Exploring Various Continuous Dielectrics

Considerations to be taken into account

- How to increase the dielectric thickness without getting in trouble during cool down to cryogenic temperatures due to large CTE mismatch with the CORC[®] cable?
- How can the dielectric be applied without degrading the superconducting cable?

Extruded polyester cracked upon cool down

Partial discharge becoming a problem above 6.5 kV for 1 mm thick PEEK

Alternative Approaches to Develop Sealed Dielectrics

Why it's better to not go the extrusion route

- Extruding of PEEK onto the superconducting cable would likely harm it (extrusion temperature of PEEK is around 350 °C)
- Higher voltage rating would require thicker PEEK layers, making the cable very stiff

Dielectric separated from the helium gas as in the NEXANS Best Path case, and replacing it with:

- Nothing (air)
- A dielectric liquid

What would happen at 50 K?

- Most particles in air would freeze
- The dielectric liquid would solidify

ech

Advanced Conductor Technologies

Alternative Approaches to Develop Sealed Dielectrics

Wrapped NOMEX 410 dielectric in air

- 20 layers resulting in a 2.3 mm thick layer
- Sample was a 8 mm diameter copper rod

3M Novec 649 engineering liquid

- Liquid forms a continuous solid when frozen
- Using ABS, GPO or FTPE spacers

	RT		77 K	
Run #	BD (kV)	Run #	BD (kV)	
1	17.7	1	57.9	111
2	17.4	2	41.9	
3	20.6	3	43.5	
4	26.1	4	38.9	
5	27.7	5	8	1

Initial results of alternative approaches with low PD up to 9.5 kV are encouraging!

Development of Efficient CORC® Cable Interface

Overall goal

- Develop a compact cable interface between 50 K and room temperature
- Current leads with helium gas heat exchangers, removing all needs for LN₂ use
- Allow turn-key, continuous operation of the CORC[®] power cable system using pressurized helium gas cooling

System configuration

- Single-pole CORC[®] cable
- Flexible cryostat (2 m)
- Conduction-cooled leads, optimized for 1,200 A
- Mainly off-the-shelf vacuum hardware

CORC[®] Cable and Current Lead Test Setup

Advanced Conductor Technologies

Continuous Operation at 1,200 A of the CORC[®] Cable

- Cool down from room temperature to operating temperature within 5 hours
- Temperature increasing at 1,230 A and dropping at 1,200 A

Summary

Successful initial demonstration of a helium gas cooled CORC[®] cable

- 2-pole dc cable operation demonstrated at over 4,000 per pole
- Cable was cooled with pressurized helium gas
- Current leads were cooled with liquid nitrogen

Development of dielectrics for helium gas cooled CORC® cables underway

- Several approaches to seal the dielectric from helium gas penetration explored
- Dielectrics now allow operation at about 6 kV, halfway to our goal of 12 kV

CORC® cable terminations with helium gas cooled current leads developed

- Removes the requirement of liquid nitrogen pre-cooling and only requires helium gas
- Turnkey, continuous operation at 1,200 A demonstrated

