This work was in part supported by the US Department of Energy under agreement numbers DE-SC0009545, DE-SC0013723, DE-SC0014009, DE-SC0015775, DE-SC0018125, DE-SC0018127 and DE-SC0018710.

Recent Progress on CORC® Cables and Wires for High-Field Magnet Applications

Jeremy Weiss and Danko van der Laan

Advanced Conductor Technologies & University of Colorado, Boulder, Colorado, USA

Drew Hazelton

SuperPower Inc., Schenectady, New York, USA

Dima Abraimov, Ashleigh Francis

National High Magnetic Field Laboratory, Tallahassee, Florida, USA

CORC® magnet cables and wires

CORC® wires (2.5-4.5 mm diameter)

- Wound from 2-3 mm wide tapes with 25-30 μm thick substrate
- Typically no more than 30 tapes
- Isotopically flexible with bending down to < 50 mm diameter

CORC® cables (5-8 mm diameter)

- Wound from 3-4 mm wide tapes with 30-50 μm substrate
- Typically no more than 50 tapes
- Flexible with bending down to > 100 mm diameter

CORC®-Cable In Conduit Conductor (CICC)

- Performance as high as 100,000 A (4.2 K, 20 T)
- Combination of multiple CORC® cables or wires
- Bending diameter about 1 meter

CORC'

Present anatomy of a high J_e CORC® wire

- Hastelloy (51%)
- Copper (17%)
- Void/lubricant (17%)
- CORC® insulation (8%)
- Silver (4%)
- ReBCO (2-3%)

Transverse cross section

Core / former (40-60% area)

- Typically OFHC copper
- Could be stronger
- Could be functional

CORC® J_e comparison to high-field magnet wires

Advanced Conductor Technologies

www.advancedconductor.com

CORC® production

Winding of long CORC® cables and wires with custom machine

- Accurate control of cable layout
- Long cable lengths possible (> 100 meters)
- I retention after winding 95-100 %

Cumulative CORC® production

- about 800 meters since 2012
- includes 400 meters for commercial orders (including about 130 meters for open orders)

Newest CORC® wires demonstrated

Pushing the limits

Increasing $J_e(20 \text{ T})$ in CORC® wires

CORC® wires introduced 2016

- Typically smaller than 4 mm thickness
- Wound from 2 and 3 mm wide tapes
- Wound from tapes with 30 μm substrates
- Bending down to 50 mm diameter allows testing in typical superconducting R&D magnets
- Testing now in 12 T solenoid magnet

Increase $J_e(20 \text{ T})$ by reducing the former size

Thinner substrates allow smaller formers in CORC® cables

- Winding a tape at 45 degrees with the REBCO layer <u>under compression</u>
- Measure I_c at different former diameters

Minimum former diameter

- 4 mm for 50 μm substrate
- 3.2 mm for 38 μm substrate
- 2.4 mm for 30 μm substrate
- 2.0 mm for 25 μm substrate

Introduction of REBCO tapes with 25 µm substrates

SuperPower produced first batches of tape with 25 µm substrate

400 meters of high-quality tape of 2 mm width delivered

spikes

- I_c(77 K) = 65 A and 4.2 K pinning similar to 30 μm
- Piece lengths in the order of 30 meters
- Actual substrate 22 23 μm thick
- Enables CORC® wires with 2 mm former

Picture courtesy of M. Small (ASC-NHMFL)

M. Small (ASC-NHMFL)

Data Courtesy of A. Francis and D. Abraimov (ASC-NHMFL)

TapeStar I_c(77 K) data

sole:

Performance of next generation CORC® wires

CORC® wire to increase $J_e(20 \text{ T})$

- 32 tapes
- 2 mm (25 μm) and 3 mm (30 μm) width
- Outer diameter 3.42 mm

New record J_e (12 T) 678 A/mm² Extrapolated J_e (20 T) 451 A/mm² J_e (B) closely follows that of the tapes

Weiss et al **SUST** 2020 https://doi.org/10.1088/1361-6668/ab72c6

Integrated diagnostics Smart conductors for complicated times

CORC® Wires with integrated diagnostics

Wire cross section

Grooved former allows integrated voltage taps, optical fibers, quench heaters, etc.

Voltage tap exits the CORC wire termination

Voltage measured using heater induced hotspot

Voltage measured over the sample terminations

I ~ 350 A (85% of L) 76 K

Internal V-Tap wire is tightly confined within CORC® wire following the current-path with almost no separation

Noise is much lower for internal V-Tap compared to external V-tap

5 m Long sample compared to 0.5 m Long sample show similar noise floor

Very little inductive pick-up, even at very high current ramping

Voltage measured using heater induced hotspot

Voltage measured over the sample terminations

I ~ 350 A (85% of L) 76 K

Internal V-Tap wire is tightly confined within CORC® wire following the current-path with almost no separation

Noise is much lower for internal V-Tap compared to external V-tap

5 m Long sample compared to 0.5 m Long sample show similar noise floor

Very little inductive pick-up, even at very high current ramping

Mechanical properties of CORC® Where are the limits and how do we push them?

Bent tape helix puts tape edge under tension

Axial tension measurements

Test Setup

- Test machine capacity = 13 kN
- Load applied through current injection terminals
- Monotonic tests performed in load control increments

Axial tension measurements

- 30 Tape CORC® wire with annealed copper core (YS of copper ~110 MPa at 77K)
 - We see core yields well before tapes
 - Due to the helix configuration of tapes, the conductor appears to be more strain tolerant than straight tapes. ie: ε^{irr} (3%) is close to 0.74 %!
 - So lets study CORC® with strong core
 - $\sigma_{\infty}^{irr (3\%)}$ from 170 MPa to 300 MPa to >500 MPa!
 - Strong desire to look at high-strength high-conductivity metal composites being developed for pulsed magnets

Transverse compression measurements

MTS test setup, load capacity 10,000 lbs (44 kN)

Side view

Load applied results in a linecontact against the conductor

- Test Temp = 76 K
- Anvil Length = 50 mm
 - 2-6 twist pitches engaged

Van der Laan et al. SUST 2018 https://doi.org/10.1088/1361-6668/aae8bf

Transverse compression measurements

3 CORC® layouts tested, optimized 30 tape wire W2 has best performance

Fujifilm imprint suggest contact width of W2 at 200 kN/m is about 1 mm

Van der Laan et al. SUST 2018 https://doi.org/10.1088/1361-6668/aae8bf

CORC®-CICC development with internal bundle support

CORC®-CICC #4 for testing in SULTAN

- 6-around-1 CICC based on CORC® cables
- Goal is 80 kA at 10.8 T background field
- Using internal support to decouple CORC® strands
- Improved CORC®-CICC terminals

Sample #4

CORC®-CICC #5 for testing in SULTAN

- Based on CORC® 12 14 wires for higher degree of transposition and higher flexibility
- Goal is 80 kA at 10.8 T background field
- Using internal support to decouple CORC® strands

Sample #5

Collaborative needs for CORC® development

Tape development

- To increase the flexibility of CORC®, we need narrower widths (1 mm, 1.5 mm)
 - Seems trivial but it's not
 - Good for decreasing magnetization effects too
- 20-25 μm thick substrates hit the sweet spot in terms of size and J_e
 - Demonstrated, value but R&D effort of tape from commercial venders is stalled
 - Many challenges remain with tape handling of long lengths
 - Large tape demand coming from fusion
- Will fusion really drive tape production in the direction we want?
 - FES CORC® has different needs than HEP CORC®
 - Fusion will not likely pull the production of thinner substrates and narrower widths needed for compact accelerator magnets!

Magnet development

- We need to develop the technology as soon as possible
 - More testing to understand how the conductor ticks
 - Paper designs
 - Demonstrators

Recent CORC® Publications

Topical review on 10 years of CORC® progress (2009-2019)

- Covers everything from conductor development to joints and magnets
- https://doi.org/10.1088/2F1361-6668/2Faafc82

Recent publications (2019-2020)

- CORC® solenoid magnet tested in 14 T LTS outsert, van der Laan et al SUST (Under review)
- Studies on current sharing in CORC®, <u>Phifer</u> et al <u>Adv Cryo Eng</u> (Under review)
- AC loss and contact resistance studies, <u>Yagotintsev</u> et al **SUST** (Under review)
- CORC® wires with integrated Fibers and V-taps, van der Laan et al SUST (Under review)
- CORC® wires made with 25um Sub tapes, Weiss et al SUST https://doi.org/10.1088/1361-6668/ab72c6
- Progress on CORC® CICC development, <u>Mulder</u> et al IEEE https://doi.org/10.1109/TASC.2020.2968251
- Development of CORC® for FCL applications, <u>Weiss</u> et al **SUST** https://doi.org/10.1088/1361-6668/aafaa7
- 1.2 T CCT magnet demonstrator, Wang et al SUST https://doi.org/10.1088/1361-6668/ab0eba
- Axial tension and fatigue testing, van der Laan et al SUST https://doi.org/10.1088/1361-6668/ab06a3

Papers and presentations from conferences and workshops available online

https://www.advancedconductor.com/technicalinformation/

Not possible without the support of DOE, the US Navy, and various collaborators. Thank you!

Summary

CORC® wires and cables have matured into magnet conductors

- High-quality, long-length CORC® conductors routinely produced for commercial orders
- High currents have been demonstrated: > 8,500 A (4.2 K, 12 T)
- High current densities have been reached: > 450 A/mm² (4.2 K, 20 T)
- Integrated V-Taps for quench detection show a lot of promise
- Conductor has high stress/strain tolerance
 - Axial tension
 - Transverse compression
 - Fatigue up to 100,000 cycles
- Commercial tape needs for further CORC® development
 - Thinner substrates (20-25 um) to improve J_e
 - Narrower widths (1 and 1.5 mm) to improve flexibility
 - Higher J_e (thicker films, better pinning) to decrease magnet volume

